Newest publications
Guidelines for improved quantification and reporting of carbon stocks and additional carbon storage in agroforestry systems
(2025) Cardinael, Rémi; Cadisch, Georg; Dupraz, Christian; Lojka, Bohdan; Oelbermann, Maren
The number of scientific publications related to biomass carbon or soil organic carbon under various land management practices has globally and dramatically increased during the last two decades, the same applies to the peer reviewed Agroforestry Systems journal. However, the quality of papers on carbon sequestration in agroforestry systems is very heterogeneous, and many studies do not fulfil simple requirements that would ensure the scientific value of these studies, resulting in high rates of rejections before and after review. The aim of this paper, co-authored by the Editor-in-Chief and Associate Editors of the Agroforestry Systems journal is to provide some basic guidelines to improve the quantification and reporting of carbon stocks and additional carbon storage in agroforestry systems, and to maximize manuscript acceptance. These guidelines are also of use for any other international peer-reviewed journal publishing studies on this topic. We also provide a checklist, for both authors and reviewers, of compulsory and recommended variables to be included before submission of an original study related to soil and/or biomass carbon stocks and sequestration in agroforestry systems.
A novel, robust peptidyl-lys metalloendopeptidase from Trametes coccinea recombinantly expressed in Komagataella phaffii
(2024) Ahmed, Uzair; Stadelmann, Tobias; Heid, Daniel; Würtz, Berit; Pfannstiel, Jens; Ochsenreither, Katrin; Eisele, Thomas
A novel peptidyl-lys metalloendopeptidase ( Tc -LysN) from Tramates coccinea was recombinantly expressed in Komagataella phaffii using the native pro-protein sequence. The peptidase was secreted into the culture broth as zymogen (~38 kDa) and mature enzyme (~19.8 kDa) simultaneously. The mature Tc -LysN was purified to homogeneity with a single step anion-exchange chromatography at pH 7.2. N-terminal sequencing using TMTpro Zero and mass spectrometry of the mature Tc- LysN indicated that the pro-peptide was cleaved between the amino acid positions 184 and 185 at the Kex2 cleavage site present in the native pro-protein sequence. The pH optimum of Tc -LysN was determined to be 5.0 while it maintained ≥60% activity between pH values 4.5—7.5 and ≥30% activity between pH values 8.5—10.0, indicating its broad applicability. The temperature maximum of Tc -LysN was determined to be 60 °C. After 18 h of incubation at 80 °C, Tc -LysN still retained ~20% activity. Organic solvents such as methanol and acetonitrile, at concentrations as high as 40% (v/v), were found to enhance Tc -LysN’s activity up to ~100% and ~50%, respectively. Tc -LysN’s thermostability, ability to withstand up to 8 M urea, tolerance to high concentrations of organic solvents, and an acidic pH optimum make it a viable candidate to be employed in proteomics workflows in which alkaline conditions might pose a challenge. The nano-LC-MS/MS analysis revealed bovine serum albumin (BSA)’s sequence coverage of 84% using Tc -LysN which was comparable to the sequence coverage of 90% by trypsin peptides.
Key points
• A novel LysN from Trametes coccinea (Tc-LysN) was expressed in Komagataella phaffii and purified to homogeneity • Tc-LysN is thermostable, applicable over a broad pH range, and tolerates high concentrations of denaturants • Tc-LysN was successfully applied for protein digestion and mass spectrometry fingerprinting
Preference and possible consumption of provided enrichment and bedding materials and disinfectant powder by growing pigs
(2022) Koch, Felicitas; Kowalczyk, Janine; Mielke, Hans; Schenkel, Hans; Bachmann, Martin; Zeyner, Annette; Leinweber, Peter; Pieper, Robert
Background: Domestic pigs have an evolutionary conserved exploratory behaviour. To comply with this requirement, the European Union aims at setting standards for appropriate enrichment materials for pigs (Council Directive 2008/120/EC). As recommended characteristics include ‘chewable’ and ‘edible’, pigs might also consume these materials (Commission Recommendation (EU) 2016/336), which are often additionally advertised to enhance lying comfort and hygienic conditions in stables. To date, a wide range of bedding, enrichment and disinfectant materials is available on the market to ensure environmental enrichment, a dry, hygienic environment or lying comfort. Previous studies revealed considerable amounts of undesirable substances in some of these materials possibly being a risk for food safety considering oral uptake by the animal. To determine interest and indicators for consumption of different types of materials by pigs during exploratory behaviour, a camera-assisted observational study with 12 female pigs (German Landrace) was conducted. We tested their preference for a disinfectant powder, peat, biochar and straw as reference material in a 4 × 6 factorial arrangement. Results: Pigs manipulated and consumed all offered materials. However, longest manipulation time per pig was observed for biochar (63 min/day) and peat (50 min/day) (p < 0.05). Analyses of the bulk molecular-chemical composition and n-alkanes and acid insoluble ash as markers in the materials and in faeces clearly revealed the consumption of these materials by pigs. Conclusions: Whether the consumption of considerable amounts together with certain levels of undesirable substances represents a risk for pig and consumer health could yet not be established. Future studies will address the quantitative contribution of undesirable substances by oral ingestion of bedding and enrichment materials and disinfectant powders to the daily feed ration.
The diversity of quinoa morphological traits and seed metabolic composition
(2022) Tabatabaei, Iman; Alseekh, Saleh; Shahid, Mohammad; Leniak, Ewa; Wagner, Mateusz; Mahmoudi, Henda; Thushar, Sumitha; Fernie, Alisdair R.; Murphy, Kevin M.; Schmöckel, Sandra M.; Tester, Mark; Mueller-Roeber, Bernd; Skirycz, Aleksandra; Balazadeh, Salma
Quinoa (Chenopodium quinoa Willd.) is an herbaceous annual crop of the amaranth family (Amaranthaceae). It is increasingly cultivated for its nutritious grains, which are rich in protein and essential amino acids, lipids, and minerals. Quinoa exhibits a high tolerance towards various abiotic stresses including drought and salinity, which supports its agricultural cultivation under climate change conditions. The use of quinoa grains is compromised by anti-nutritional saponins, a terpenoid class of secondary metabolites deposited in the seed coat; their removal before consumption requires extensive washing, an economically and environmentally unfavorable process; or their accumulation can be reduced through breeding. In this study, we analyzed the seed metabolomes, including amino acids, fatty acids, and saponins, from 471 quinoa cultivars, including two related species, by liquid chromatography – mass spectrometry. Additionally, we determined a large number of agronomic traits including biomass, flowering time, and seed yield. The results revealed considerable diversity between genotypes and provide a knowledge base for future breeding or genome editing of quinoa.
Fiber hemp biomass yield and quality on shallow stony soil in Southwest Germany
(2025) Greiner, Beatrice E.; Kunisch, Jana; Krauße, Galina; Thiel, Theresa; Schwadorf, Klaus; von Cossel, Moritz; Kabala, Cezary
Shallow arable soils (<35 cm depth) are classified as marginal for common agriculture but may still support biomass production from industrial crops like fiber hemp, which has a low indirect land-use change risk. However, little is known about hemp’s performance under such conditions. Therefore, this study investigated the biomass yield and quality of fiber hemp and other crops on a shallow (<35 cm), stony (>15% stone content), and clay-rich (>50% clay content) soil at 800 m above sea level in Southwest Germany (2018–2021). A randomized field trial tested different row widths and nitrogen (N) fertilization levels to assess low-input options for the given type of marginal land. Across years and row widths, hemp achieved average grain dry matter (DM) yields of 1.3 Mg/ha at a fertilization rate of 40 kg N/ha and 1.6 Mg/ha at 120 kg N/ha (with on average 30.9 ± 1.4% crude fat content across treatments). The average stem DM yields accounted for 5.11 Mg/ha (40 kg N/ha) and 6.08 Mg/ha (120 kg N/ha), respectively. Reduced N fertilization (40 kg/ha) lowered DM yields by up to 16% compared to full fertilization (120 kg/ha), but the effect was not significant and weaker at wider row spacing (45 cm). Additionally, maize reached acceptable DM yields (>17 Mg/ha). These findings suggest that shallow soils classified as marginal require reassessment, as they may offer viable opportunities for sustainable industrial hemp cultivation and contribute to a bio-based economy.