hohPublica

hohPublica offers open access to scientific publications of the University of Hohenheim.

Inform Publish Research
 

Newest publications

Publication
AI-enabled information systems: teaming up with intelligent agents in networked business
(2024) Hofmann, Peter; Urbach, Nils; Lanzl, Julia; Desouza, Kevin C.; Hofmann, Peter; FIM Research Center, University of Bayreuth, Bayreuth, Germany; Urbach, Nils; FIM Research Center, University of Bayreuth, Bayreuth, Germany; Lanzl, Julia; FIM Research Center, University of Bayreuth, Bayreuth, Germany; Desouza, Kevin C.; School of Management, Faculty of Business & Law, Queensland University of Technology, Brisbane, Australia
Publication
Practical preparation of unsaturated very-long-chain fatty acids (VLCFAs) and very-long-chain alkene pollinator attractants
(2024) Bohman, Björn; Bersch, Aylin J.; Flematti, Gavin R.; Schlüter, Philipp M.; Bohman, Björn; School of Molecular Sciences, University of Western Australia, Perth, Australia; Bersch, Aylin J.; Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany; Flematti, Gavin R.; School of Molecular Sciences, University of Western Australia, Perth, Australia; Schlüter, Philipp M.; Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
To prepare very-long-chain fatty acids and alkenes (VLCFAs and VLC alkenes) that are known pollinator attractants for sexually deceptive orchids, and biosynthetic precursors thereof, we applied a methodology allowing us to prepare monounsaturated VLCFAs with chain lengths up to 28 carbons and VLC alkenes up to 31 carbons. We implemented a coupling reaction between commercially available terminal alkynes and bromoalkanoic acids to prepare VLCFAs, allowing the products to be formed in two steps. For VLC alkenes, with many alkyltriphenylphosphonium bromides commercially available, we applied a Wittig reaction approach to prepare ( Z )-configured monoenes in a single step. Using practical methods not requiring special reagents or equipment, we obtained 11 VLCFAs in > 90% isomeric purity, and 17 VLC alkenes in > 97% isomeric purity. Such general and accessible synthetic methods are essential for chemical ecology and biochemistry research to aid researchers in unambiguously identifying isolated semiochemicals and their precursors.
Publication
Genomic dissection of the correlation between milk yield and various health traits using functional and evolutionary information about imputed sequence variants of 34,497 German Holstein cows
(2024) Schneider, Helen; Krizanac, Ana-Marija; Falker-Gieske, Clemens; Heise, Johannes; Tetens, Jens; Thaller, Georg; Bennewitz, Jörn; Schneider, Helen; Institute of Animal Science, University of Hohenheim, 70599, Stuttgart, Germany; Krizanac, Ana-Marija; Department of Animal Sciences, University of Göttingen, 37077, Göttingen, Germany; Falker-Gieske, Clemens; Department of Animal Sciences, University of Göttingen, 37077, Göttingen, Germany; Heise, Johannes; Vereinigte Informationssysteme Tierhaltung w.V. (VIT), 27283, Verden, Germany; Tetens, Jens; Department of Animal Sciences, University of Göttingen, 37077, Göttingen, Germany; Thaller, Georg; Institute of Animal Breeding and Husbandry, Christian-Albrechts University of Kiel, 24098, Kiel, Germany; Bennewitz, Jörn; Institute of Animal Science, University of Hohenheim, 70599, Stuttgart, Germany
Background: Over the last decades, it was subject of many studies to investigate the genomic connection of milk production and health traits in dairy cattle. Thereby, incorporating functional information in genomic analyses has been shown to improve the understanding of biological and molecular mechanisms shaping complex traits and the accuracies of genomic prediction, especially in small populations and across-breed settings. Still, little is known about the contribution of different functional and evolutionary genome partitioning subsets to milk production and dairy health. Thus, we performed a uni- and a bivariate analysis of milk yield (MY) and eight health traits using a set of ~34,497 German Holstein cows with 50K chip genotypes and ~17 million imputed sequence variants divided into 27 subsets depending on their functional and evolutionary annotation. In the bivariate analysis, eight trait-combinations were observed that contrasted MY with each health trait. Two genomic relationship matrices (GRM) were included, one consisting of the 50K chip variants and one consisting of each set of subset variants, to obtain subset heritabilities and genetic correlations. In addition, 50K chip heritabilities and genetic correlations were estimated applying merely the 50K GRM. Results: In general, 50K chip heritabilities were larger than the subset heritabilities. The largest heritabilities were found for MY, which was 0.4358 for the 50K and 0.2757 for the subset heritabilities. Whereas all 50K genetic correlations were negative, subset genetic correlations were both, positive and negative (ranging from -0.9324 between MY and mastitis to 0.6662 between MY and digital dermatitis). The subsets containing variants which were annotated as noncoding related, splice sites, untranslated regions, metabolic quantitative trait loci, and young variants ranked highest in terms of their contribution to the traits’ genetic variance. We were able to show that linkage disequilibrium between subset variants and adjacent variants did not cause these subsets’ high effect. Conclusion: Our results confirm the connection of milk production and health traits in dairy cattle via the animals’ metabolic state. In addition, they highlight the potential of including functional information in genomic analyses, which helps to dissect the extent and direction of the observed traits’ connection in more detail.
Publication
Storable cheese curd—effect of milk homogenization as a pre-treatment and freezing and extrusion of cheese curd on production of pasta filata style cheese
(2024) Schmidt, Florian; Graf, Britta; Hinrichs, Jörg; Schmidt, Florian; Institute of Food Science and Biotechnology, Department of Soft Matter Science and Dairy Technology, University of Hohenheim, Garbenstrasse 21, 70599, Stuttgart, Germany; Graf, Britta; Institute of Food Science and Biotechnology, Department of Soft Matter Science and Dairy Technology, University of Hohenheim, Garbenstrasse 21, 70599, Stuttgart, Germany; Hinrichs, Jörg; Institute of Food Science and Biotechnology, Department of Soft Matter Science and Dairy Technology, University of Hohenheim, Garbenstrasse 21, 70599, Stuttgart, Germany
This study investigates the production of pasta filata style cheese from a storable, frozen intermediate material. Homogenization (2–16 MPa, single-staged) of milk (fat/protein = 0.9) was used as a tool to decrease fat globule size and consequently fat losses. Plasticization was achieved by using a single-screw extruder set up with double-jacketed hot water cycle. Non-frozen and frozen cheese curd as well as the extruded pasta filata style cheese pre-treated with different homogenization pressure was analyzed regarding the thermo-rheological properties. Fat and protein gain/loss during extrusion was evaluated by analyzing fat in dry matter (FDM) and protein in dry matter (PDM) before and after extrusion. Homogenization of cheese milk leads to a reduction of tan  δ for thereof produced raw cheese curd material as well as the extruded products. Freezing and extrusion counteract the reduction of tan  δ . A homogenization pressure of 8 MPa is sufficient to prevent fat losses during extrusion while still maintaining plasticization of the product for fresh and frozen material, respectively. The FDM after extrusion is 0.8% higher for fresh material and 4.9% higher for frozen material, which means that the fat concentrates during extrusion due to water loss. Moreover, there is no loss of PDM for all samples, regardless of the homogenization pressure. A combination of homogenization pressure, freezing, and extrusion leads to a plasticizable product without losses of fat and protein. Hence, frozen cheese curd can be used as a storable intermediate.
Publication
Comparative assessment of ethanol production from six typical German waste baked products
(2024) Almuhammad, Mervat; Kölling, Ralf; Einfalt, Daniel; Almuhammad, Mervat; Yeast Genetics and Fermentation Technology, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstraße 23, 70599, Stuttgart, Germany; Kölling, Ralf; Yeast Genetics and Fermentation Technology, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstraße 23, 70599, Stuttgart, Germany; Einfalt, Daniel; Yeast Genetics and Fermentation Technology, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstraße 23, 70599, Stuttgart, Germany
This study investigates the potential for bioethanol production of six types of typical German leftover baked products: bread rolls, pretzel rolls, fine rye bread, white bread, pastry, and cream cakes. The experimental setup consisted of two experiments—one as a control and another with the addition of diammonium phosphate (DAP) to the mash. In terms of monosaccharide concentration at 30% dry matter (DM), white bread mash exhibited the highest level at 251.5 g/L, while cream cakes mash had the lowest at 186 g/L. The highest ethanol production occurred after 96 h of fermentation with rye bread, yielding 78.4 g/L. In contrast, despite having the highest monosaccharide levels, white bread produced only 21.5 g/L of ethanol after 96 h. The addition of DAP accelerated monosaccharide consumption in all baked products, with cream cakes completing the process in just 24 h. Bread rolls, pretzel rolls, pastry, and white bread fermentations finished within 72 h. Ethanol yields significantly increased in three DAP samples, with pretzel rolls yielding the highest ethanol concentration at 98.5 g/L, followed by white bread with 90.6 g/L, and bread rolls with 87.7 g/L. DAP had a substantial impact on all samples, reducing fermentation time and/or increasing ethanol yield. This effect was particularly pronounced with white bread, where it improved conversion efficiency from 17 to 72%, resulting in 90.6 g/L of ethanol. These results demonstrate that waste baked products hold substantial potential for bioethanol production, and this potential can be further enhanced through the addition of DAP.