Fakultät Naturwissenschaften
Permanent URI for this communityhttps://hohpublica.uni-hohenheim.de/handle/123456789/1
Biologie, Ernährungs-wissenschaften und Lebensmittelwissenschaften sind die Schwerpunkte der Fakultät. Die Forschung befasst sich mit Schlüsselthemen der Life Sciences.
Homepage: https://natur.uni-hohenheim.de/
Browse
Browsing Fakultät Naturwissenschaften by Classification "640"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Nutrient composition of the Indonesian sago grub (Rhynchophorus bilineatus)(2020) Köhler, Realm; Irias-Mata, Andrea; Ramandey, Euniche; Purwestri, Ratna; Biesalski, Hans-KonradThe sago grub (Rhynchophorus bilineatus) [Montrouzier, Coleoptera, Dryophthoridae] is a local delicacy in the Papua Province in Indonesia. In this study, the nutrient content of the edible insect was measured using chromatographic and spectrometric methods. The results showed that it contains 10.39 g protein and 17.17 g oil/ 100 g fresh weight. The sago grub meets the FAO/WHO requirements of 40% essential amino acids and a 0.60 ratio between essential to non-essential amino acids. Its limiting amino acid is methionine + cysteine. The major fatty acids found in the sago grub are palmitic (42%), oleic (45%), and linoleic (3%) acids. Although vitamin E is exclusively produced by photosynthetic organisms, a gram of sago grub oil contains 51 μg vitamin E, which is composed mainly of tocopherols (92%). In contrast with palm oil, the sago grub oil contains δ-tocopherol (0.12 μg/g oil), and a significantly high amount of β-tocopherol (3.85 μg/g oil). It is a source of zinc and magnesium and contains safe levels of heavy metals. Based on these nutritional properties, the Indonesian sago grub can be considered as a good source of nutrients, and its propagation and utilization should be encouraged especially in other areas of Indonesia and maybe in neighboring countries where they are also endemic, and where malnutrition is prevalent. The consumption of edible insects should be considered as a component of dietary diversification – a sustainable way of alleviating the nutritional status of the population.Publication Sensorial and aroma profiles of coffee by-products - coffee leaves and coffee flowers(2023) Rigling, Marina; Steger, Marc C.; Lachenmeier, Dirk W.; Schwarz, Steffen; Zhang, YanyanThe utilization of coffee leaves and flowers has been underestimated over the years. Both by-products can be obtained from coffee trees without adversely affecting the production of coffee beans. To gain fundamental knowledge of their sensorial and aroma profiles, it becomes essential to reintroduce them into the food chain. Accordingly, 24 different coffee leaf samples generated from diverse processing as well as 38 varied species of coffee flowers were analyzed for their sensory characteristics by descriptive analysis and liking tests, and their corresponding aroma profiles were decoded by means of gas chromatography–mass spectrometry–olfactometry. For the coffee leaves, a wide range of different flavors could be detected in the sensory evaluation. The fermented coffee leaf samples clearly showed more sweetish and fruity aroma notes compared to the intense green and vegetable aroma of the non-fermented samples. β-Ionone (honey-like), decanal (citrus-like, floral), α-ionone (floral), octanal (fruity), and hexanal (green) were identified as key volatile compounds but distributed in different ratios. In the predominant coffee flowers, hay-like, hop-like, sage-like, dried apricot-like, and honey-like impressions were identified as major aroma descriptors in addition to a basic floral note. 2-Heptanol (fruity), 2-ethylhexanol (green), nerol (floral), and geraniol (floral) were identified as representative aroma compounds. All in all, a great variety of flavors was detected from the coffee leaves and flowers, which will not only provide an insight into the potential applications for the food market (i.e., coffee leaf tea and coffee flower tea) but will also help make coffee growing more sustainable.
