Sondersammlungen
Permanent URI for this communityhttps://hohpublica.uni-hohenheim.de/handle/123456789/7011
Browse
Browsing Sondersammlungen by Classification "000"
Now showing 1 - 20 of 21
- Results Per Page
- Sort Options
Publication Enabling adaptive food monitoring through sampling rate adaptation for efficient, reliable critical event detection(2025) Jox, Dana; Schweizer, Pia; Henrichs, Elia; Krupitzer, Christian; Jox, Dana; Department of Food Informatics and Computational Science Hub, University of Hohenheim, 70599 Stuttgart, Germany; Schweizer, Pia; Department of Food Informatics and Computational Science Hub, University of Hohenheim, 70599 Stuttgart, Germany; Niu, Jianwei; Department of Food Informatics and Computational Science Hub, University of Hohenheim, 70599 Stuttgart, Germany; Niu, JianweiMonitoring systems are essential in many fields, such as food production, storage, and supply, to collect information about applications or their environments to enable decision-making. However, these systems generate massive amounts of data that require substantial processing. To improve data analysis efficiency and reduce data collectors’ energy demand, adaptive monitoring is a promising approach to reduce the gathered data while ensuring the monitoring of critical events. Adaptive monitoring is a system’s ability to adjust its monitoring activity during runtime in response to internal and external changes. This work investigates the application of adaptive monitoring—especially, the adaptation of the sensor sampling rate—in dynamic and unstable environments. This work evaluates 11 distinct approaches, based on threshold determination, statistical analysis techniques, and optimization methods, encompassing 33 customized implementations, regarding their data reduction extent and identification of critical events. Furthermore, analyses of Shannon’s entropy and the oscillation behavior allow for estimating the efficiency of the adaptation algorithms. The results demonstrate the applicability of adaptive monitoring in food storage environments, such as cold storage rooms and transportation containers, but also reveal differences in the approaches’ performance. Generally, some approaches achieve high observation accuracies while significantly reducing the data collected by adapting efficiently.Publication Jahresbericht 2006 des Rektors / Universität Hohenheim(2007) ; Liebig, Hans-PeterPublication Jahresbericht 2007 des Rektors / Universität Hohenheim(2008) ; Liebig, Hans-PeterPublication Jahresbericht 2008 / Universität Hohenheim(2009) Liebig, Hans-PeterPublication Jahresbericht 2009 / Universität Hohenheim(2010) Liebig, Hans-PeterPublication Jahresbericht 2010 / Universität Hohenheim(2011) Liebig, Hans-PeterPublication Jahresbericht 2011 / Universität Hohenheim(2012) Liebig, Hans-PeterPublication Jahresbericht 2012 / Universität Hohenheim(2013) Dabbert, StephanPublication Jahresbericht 2016 / Universität Hohenheim(2017) Dabbert, StephanPublication Jahresbericht 2017 / Universität Hohenheim(2018) Dabbert, StephanPublication Jahresbericht 2018 / Universität Hohenheim(2019) Dabbert, StephanPublication Jahresbericht 2019 / Universität Hohenheim(2020) Dabbert, StephanPublication Jahresbericht 2020 / Universität Hohenheim(2021) Dabbert, StephanPublication Jahresbericht 2021 / Universität Hohenheim(2022) Dabbert, StephanPublication Jahresbericht 2022 / Universität Hohenheim(2023) Dabbert, StephanPublication Publication Publication Jahresbericht mit Zahlenspiegel 2013 / Universität Hohenheim(2014) Dabbert, StephanPublication Jahresbericht mit Zahlenspiegel 2014 / Universität Hohenheim(2015) Dabbert, StephanPublication Jahresbericht mit Zahlenspiegel 2015 / Universität Hohenheim(2016) Dabbert, Stephan
