Institut für Lebensmittelchemie
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/8
Browse
Browsing Institut für Lebensmittelchemie by Journal "European food research and technology"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Publication Analysis of acrylamide in vegetable chips after derivatization with 2-mercaptobenzoic acid by liquid chromatography–mass spectrometry(2022) Oellig, Claudia; Gottstein, Eva; Granvogl, MichaelSince many years, acrylamide (AA) is a well-known toxicologically relevant processing contaminant (“food-borne toxicant”). However, only during the recent years, high levels of acrylamide have been reported in vegetable chips. In the present study, AA was quantitated via a modified derivatization procedure with 2-mercaptobenzoic acid based on stable isotope dilution analysis and liquid chromatography–mass spectrometry. Extraction with a modified QuEChERS (quick, easy, cheap, efficient, rugged, safe) method, defatting with n -hexane, and a solid phase extraction clean-up with strong cation-exchange material were performed prior to the derivatization step. Limits of detection and quantitation (LoD and LoQ) were 12 and 41 µg of AA/kg of vegetable chips (estimated via signal-to-noise ratios of 3:1 and 10:1, respectively), and thus below the LoQ of 50 µg/kg requested by the European Food Safety Authority. Recovery rates between 92 and 101% at four spiking levels with a good precision expressed as a relative standard deviation < 7% were determined. With this method at hand, a survey of the current AA amounts in 38 vegetable chips from the worldwide market was performed, showing a remarkable variability between the different vegetables, but also between different products of the same vegetable. Thereby, the AA amounts ranged between 77.3 and 3090 µg/kg, with an average of 954 µg/kg which was distinctly higher in comparison to commercially available potato chips also analyzed in the present study (12 samples, range: 117–832 µg/kg, average: 449 µg/kg). While for sweet potato and parsnip relatively low AA amounts were found, beetroot and carrot showed rather high contents.Publication Analysis of mono-, di-, triacylglycerols, and fatty acids in food emulsifiers by high-performance liquid chromatography–mass spectrometry(2021) Schick, Dinah; Link, Katharina; Schwack, Wolfgang; Granvogl, Michael; Oellig, ClaudiaMono- and diacylglycerols (MG/DG) of fatty acids (FA), known as emulsifiers of the type E 471, are food additives used to adjust techno-functional properties of various foodstuffs. These emulsifiers, however, are not defined single compounds but comprise, in addition to MG and DG, other constituents such as FA, triacylglycerols (TG), and glycerol. Although the emulsifiers’ compositions affect techno-functional properties of the food, knowledge of the composition is scarcely available, and the emulsifiers and their dosage are generally chosen empirically. Thus, a simple and rather inexpensive method for the simultaneous determination of FA, 1-MG, 2-MG, 1,2-DG, 1,3-DG, and TG by high-performance liquid chromatography–mass spectrometry including a straightforward quantitation strategy has been developed. Reversed-phase chromatography with gradient elution offered adequate separation of 29 considered analytes within 21 peaks, while mass-selective detection provided their unequivocal identification. The quantitation strategy based on calibration just with the C16:0 representatives of each lipid class and a corresponding response factor system has proven to provide reliable results. The determined concentrations of different mixtures comprising varying compositions and concentrations of C16:0, C18:0, and C18:1 components of each lipid class deviated < 20% (n = 351) from the respective target concentrations. Limits of decision were determined to 0.3–0.8 mg/L and limits of quantitation to 0.8–1.7 mg/L, expressed as C16:0 representatives. Application of the method to various E 471 emulsifiers provided detailed data on their chemical compositions, and calculated FA compositions matched very well those determined by common methods such as gas chromatography with flame ionization detection.Publication Identification and quantification of dicarboxylic fatty acids in head tissue of farmed Nile tilapia (Oreochromis niloticus)(2021) Lehnert, Katja; Rashid, Mamun M.; Barman, Benoy Kumar; Vetter, WalterNile tilapia (Oreochromis niloticus) was grown in Bangladesh with four different feeding treatments as part of a project that aims to produce fish in a cost-effective way for low-income consumers in developing countries. Fillet and head tissue was analysed because both tissues were destined for human consumption. Gas chromatography with mass spectrometry (GC/MS) analyses of transesterified fatty acid methyl ester extracts indicated the presence of ~ 50 fatty acids. Major fatty acids in fillet and head tissue were palmitic acid and oleic acid. Both linoleic acid and polyunsaturated fatty acids with three or more double bonds were presented in quantities > 10% of total fatty acids in fillet, but lower in head tissue. Erucic acid levels were below the newly proposed tolerable daily intake in the European Union, based on the consumption of 200 g fillet per day. Moreover, further analysis produced evidence for the presence of the dicarboxylic fatty acid azelaic acid (nonanedioic acid, Di9:0) in head tissue. To verify this uncommon finding, countercurrent chromatography was used to isolate Di9:0 and other dicarboxylic acids from a technical standard followed by its quantification. Di9:0 contributed to 0.4–1.3% of the fatty acid profile in head tissue, but was not detected in fillet. Fish fed with increasing quantities of flaxseed indicated that linoleic acid was the likely precursor of Di9:0 in the head tissue samples.Publication Valuable furan fatty acids in soybeans and soy products(2020) Müller, Franziska; Hogg, Melanie; Vetter, WalterFuran fatty acids (FuFAs) are valuable minor compounds in our food with excellent antioxidant properties. Naturally occurring FuFAs are characterised by a central furan moiety with one or two methyl groups in β-/β’-position of the heterocycle (monomethyl- or M-FuFAs and dimethyl- or D-FuFAs). Comparably high concentrations of D-/M-FuFAs were reported in soybeans, but soy is often consumed as a processed product, such as full-fat soy flour and flakes, soy drink, tofu and texturised soy protein (TSP). Due to the chemical lability of D-/M-FuFAs, e.g. in the presence of light or oxygen, a degradation during the processing is possible. For this purpose, freshly harvested soybeans (n = 4) and differently processed soybean products (n = 22) were analysed on FuFAs. Three FuFAs, i.e. 11-(3,4-dimethyl-5-pentylfuran-2-yl)-undecanoic acid (11D5), 9-(3,4-dimethyl-5-pentylfuran-2-yl)-nonanoic acid (9D5), and 9-(3-methyl-5-pentylfuran-2-yl)-nonanoic acid (9M5), were identified and quantified in all fresh soybeans and most of the processed soy products (n = 20). A trend towards lower D-/M-FuFA contents in higher processed products was observable. Lower FuFA concentrations were usually accompanied with a decrease of the share of the less stable D-FuFAs (9D5, 11D5) in favour of the M-FuFA 9M5. Furthermore, one or two 3,4-nonmethylated furan fatty acids (N-FuFAs), i.e. 8-(5-hexylfuran-2-yl)-octanoic acid (8F6) and partly 7-(5-heptylfuran-2-yl)-heptanoic acid (7F7), were detected in all processed products, but not in the freshly harvested soybeans. Our results indicate that D-/M-/N-FuFAs may serve as suitable markers for both, careful manufacturing processes and adequate storage conditions of soy products.
