Landessaatzuchtanstalt
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/32
Browse
Browsing Landessaatzuchtanstalt by Journal "Theoretical and applied genetics"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Publication Genetic architecture underlying the expression of eight α-amylase trypsin inhibitors(2021) El Hassouni, Khaoula; Sielaff, Malte; Curella, Valentina; Neerukonda, Manjusha; Leiser, Willmar; Würschum, Tobias; Schuppan, Detlef; Tenzer, Stefan; Longin, C. Friedrich H.Amylase trypsin inhibitors (ATIs) are important allergens in baker’s asthma and suspected triggers of non-celiac wheat sensitivity (NCWS) inducing intestinal and extra-intestinal inflammation. As studies on the expression and genetic architecture of ATI proteins in wheat are lacking, we evaluated 149 European old and modern bread wheat cultivars grown at three different field locations for their content of eight ATI proteins. Large differences in the content and composition of ATIs in the different cultivars were identified ranging from 3.76 pmol for ATI CM2 to 80.4 pmol for ATI 0.19, with up to 2.5-fold variation in CM-type and up to sixfold variation in mono/dimeric ATIs. Generally, heritability estimates were low except for ATI 0.28 and ATI CM2. ATI protein content showed a low correlation with quality traits commonly analyzed in wheat breeding. Similarly, no trends were found regarding ATI content in wheat cultivars originating from numerous countries and decades of breeding history. Genome-wide association mapping revealed a complex genetic architecture built of many small, few medium and two major quantitative trait loci (QTL). The major QTL were located on chromosomes 3B for ATI 0.19-like and 6B for ATI 0.28, explaining 70.6 and 68.7% of the genotypic variance, respectively. Within close physical proximity to the medium and major QTL, we identified eight potential candidate genes on the wheat reference genome encoding structurally related lipid transfer proteins. Consequently, selection and breeding of wheat cultivars with low ATI protein amounts appear difficult requiring other strategies to reduce ATI content in wheat products.Publication Long-term breeding progress of yield, yield-related, and disease resistance traits in five cereal crops of German variety trials(2021) Laidig, Friedrich; Feike, T.; Klocke, B.; Macholdt, J.; Miedaner, Thomas; Rentel, D.; Piepho, Hans-PeterPlant breeding and improved crop management generated considerable progress in cereal performance over the last decades. Climate change, as well as the political and social demand for more environmentally friendly production, require ongoing breeding progress. This study quantified long-term trends for breeding progress and ageing effects of yield, yield-related traits, and disease resistance traits from German variety trials for five cereal crops with a broad spectrum of genotypes. The varieties were grown over a wide range of environmental conditions during 1988–2019 under two intensity levels, without (I1) and with (I2) fungicides and growth regulators. Breeding progress regarding yield increase was the highest in winter barley followed by winter rye hybrid and the lowest in winter rye population varieties. Yield gaps between I2 and I1 widened for barleys, while they shrank for the other crops. A notable decrease in stem stability became apparent in I1 in most crops, while for diseases generally a decrasing susceptibility was found, especially for mildew, brown rust, scald, and dwarf leaf rust. The reduction in disease susceptibility in I2 (treated) was considerably higher than in I1. Our results revealed that yield performance and disease resistance of varieties were subject to considerable ageing effects, reducing yield and increasing disease susceptibility. Nevertheless, we quantified notable achievements in breeding progress for most disease resistances. This study indicated an urgent and continues need for new improved varieties, not only to combat ageing effects and generate higher yield potential, but also to offset future reduction in plant protection intensity.Publication Optimum breeding strategies using genomic and phenotypic selection for the simultaneous improvement of two traits(2021) Marulanda, Jose J.; Mi, Xuefei; Utz, H. Friedrich; Melchinger, Albrecht E.; Würschum, Tobias; Longin, C. Friedrich H.Selection indices using genomic information have been proposed in crop-specific scenarios. Routine use of genomic selection (GS) for simultaneous improvement of multiple traits requires information about the impact of the available economic and logistic resources and genetic properties (variances, trait correlations, and prediction accuracies) of the breeding population on the expected selection gain. We extended the R package “selectiongain” from single trait to index selection to optimize and compare breeding strategies for simultaneous improvement of two traits. We focused on the expected annual selection gain (ΔGa) for traits differing in their genetic correlation, economic weights, variance components, and prediction accuracies of GS. For all scenarios considered, breeding strategy GSrapid (one-stage GS followed by one-stage phenotypic selection) achieved higher ΔGa than classical two-stage phenotypic selection, regardless of the index chosen to combine the two traits and the prediction accuracy of GS. The Smith–Hazel or base index delivered higher ΔGa for net merit and individual traits compared to selection by independent culling levels, whereas the restricted index led to lower ΔGa in net merit and divergent results for selection gain of individual traits. The differences among the indices depended strongly on the correlation of traits, their variance components, and economic weights, underpinning the importance of choosing the selection indices according to the goal of the breeding program. We demonstrate our theoretical derivations and extensions of the R package “selectiongain” with an example from hybrid wheat by designing indices to simultaneously improve grain yield and grain protein content or sedimentation volume.Publication The performance of phenomic selection depends on the genetic architecture of the target trait(2021) Zhu, Xintian; Maurer, Hans Peter; Jenz, Mario; Hahn, Volker; Ruckelshausen, Arno; Leiser, Willmar L.; Würschum, TobiasGenomic selection is a powerful tool to assist breeding of complex traits, but a limitation is the costs required for genotyping. Recently, phenomic selection has been suggested, which uses spectral data instead of molecular markers as predictors. It was shown to be competitive with genomic prediction, as it achieved predictive abilities as high or even higher than its genomic counterpart. The objective of this study was to evaluate the performance of phenomic prediction for triticale and the dependency of the predictive ability on the genetic architecture of the target trait. We found that for traits with a complex genetic architecture, like grain yield, phenomic prediction with NIRS data as predictors achieved high predictive abilities and performed better than genomic prediction. By contrast, for mono- or oligogenic traits, for example, yellow rust, marker-based approaches achieved high predictive abilities, while those of phenomic prediction were very low. Compared with molecular markers, the predictive ability obtained using NIRS data was more robust to varying degrees of genetic relatedness between the training and prediction set. Moreover, for grain yield, smaller training sets were required to achieve a similar predictive ability for phenomic prediction than for genomic prediction. In addition, our results illustrate the potential of using field-based spectral data for phenomic prediction. Overall, our result confirmed phenomic prediction as an efficient approach to improve the selection gain for complex traits in plant breeding.