Institut für Lebensmittelwissenschaft und Biotechnologie
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/6
Browse
Browsing Institut für Lebensmittelwissenschaft und Biotechnologie by Journal "Foods"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Publication Application of two-dimensional fluorescence spectroscopy for the on-line monitoring of teff-based substrate fermentation inoculated with certain probiotic bacteria(2022) Alemneh, Sendeku Takele; Emire, Shimelis Admassu; Jekle, Mario; Paquet-Durand, Olivier; von Wrochem, Almut; Hitzmann, BerndThere is increasing demand for cereal-based probiotic fermented beverages as an alternative to dairy-based products due to their limitations. However, analyzing and monitoring the fermentation process is usually time consuming, costly, and labor intensive. This research therefore aims to apply two-dimensional (2D)-fluorescence spectroscopy coupled with partial least-squares regression (PLSR) and artificial neural networks (ANN) for the on-line quantitative analysis of cell growth and concentrations of lactic acid and glucose during the fermentation of a teff-based substrate. This substrate was inoculated with mixed strains of Lactiplantibacillus plantarum A6 (LPA6) and Lacticaseibacillus rhamnosus GG (LCGG). The fermentation was performed under two different conditions: condition 1 (7 g/100 mL substrate inoculated with 6 log cfu/mL) and condition 2 (4 g/100 mL substrate inoculated with 6 log cfu/mL). For the prediction of LPA6 and LCGG cell growth, the relative root mean square error of prediction (pRMSEP) was measured between 2.5 and 4.5%. The highest pRMSEP (4.5%) was observed for the prediction of LPA6 cell growth under condition 2 using ANN, but the lowest pRMSEP (2.5%) was observed for the prediction of LCGG cell growth under condition 1 with ANN. A slightly more accurate prediction was found with ANN under condition 1. However, under condition 2, a superior prediction was observed with PLSR as compared to ANN. Moreover, for the prediction of lactic acid concentration, the observed values of pRMSEP were 7.6 and 7.7% using PLSR and ANN, respectively. The highest error rates of 13 and 14% were observed for the prediction of glucose concentration using PLSR and ANN, respectively. Most of the predicted values had a coefficient of determination (R2) of more than 0.85. In conclusion, a 2D-fluorescence spectroscopy combined with PLSR and ANN can be used to accurately monitor LPA6 and LCGG cell counts and lactic acid concentration in the fermentation process of a teff-based substrate. The prediction of glucose concentration, however, showed a rather high error rate.Publication Consumption of antioxidant-rich “Cerrado” cashew pseudofruit affects hepatic gene expression in obese C57BL/6J high fat-fed mice(2022) Egea, Mariana Buranelo; Pierce, Gavin; Park, Si-Hong; Lee, Sang-In; Heger, Fabienne; Shay, NeilThe pseudofruit of A. othonianum Rizzini, “Cerrado” cashew pulp, has been described as rich in flavonoids, phenolic compounds, and vitamin C. The objective of this work was to evaluate the beneficial health effects seen with the addition of “Cerrado” cashew pulp (CP) to an obesogenic high fat diet provided to C57BL/6J male mice. In week 9, the HF-fed group had a significantly higher baseline glucose concentration than the LF- or HF+CP-fed groups. In RNAseq analysis, 4669 of 5520 genes were found to be differentially expressed. Among the genes most upregulated with the ingestion of the CP compared to HF were Ph1da1, SLc6a9, Clec4f, and Ica1 which are related to glucose homeostasis; Mt2 that may be involved steroid biosynthetic process; and Ciart which has a role in the regulation of circadian rhythm. Although “Cerrado” CP intake did not cause changes in the food intake or body weight of fed mice with HF diet, carbohydrate metabolism appeared to be improved based on the observed changes in gene expression.Publication Effects of Ugali maize flour fortification with chia seeds (Salvia hispanica L.) on its physico-chemical properties and consumer acceptability(2024) Chemutai, Susan; Mburu, Monica; Njoroge, Daniel; Zettel, ViktoriaThe study investigated the effect of incorporating whole chia seeds (WCS) and defatted chia seed flour (DCF) into whole maize meal for ugali preparation. Both were incorporated at substitution levels of 3%, 6%, and 9% separately, and the resulting treatments subjected to laboratory analysis. In addition, ugali samples were prepared from all the resulting flour formulations and subjected to consumer acceptability assessment. Incorporation of both DCF and WCS resulted in increased water absorption capacity (ranging from 0.78 to 0.98 g/mL), swelling index (ranging from 0.15 to 3.25 mL/g), and swelling capacity (ranging from 2.46 to 5.74 g/g). WCS decreased the bulk density and oil absorption capacity. DCF, however, resulted in an increase in bulk density and oil absorption capacity. Both DCF and WCS lowered the lightness (L*) of the products. Proximate composition ranged from 4.78 to 7.46% for crude fat, 7.22% to 9.16% for crude protein, and 1.74 to 4.27% for crude fiber. The obtained results show the potential of chia seeds as a good fortificant of maize flour since it resulted in nutritionally superior products (crude ash, crude protein, crude fat, and energy value) when compared to control. The freshly prepared ugali samples were generally acceptable to the panelists up to 9% WCS and 6% DCF substitution levels.Publication Four-dimensional (4D) printing of dynamic foods - definitions, considerations, and current scientific status(2023) Fahmy, Ahmed Raouf; Derossi, Antonio; Jekle, MarioSince its conception, the application of 3D printing in the structuring of food materials has been focused on the processing of novel material formulations and customized textures for innovative food applications, such as personalized nutrition and full sensory design. The continuous evolution of the used methods, approaches, and materials has created a solid foundation for technology to process dynamic food structures. Four-dimensional food printing is an extension of 3D printing where food structures are designed and printed to perform time-dependent changes activated by internal or external stimuli. In 4D food printing, structures are engineered through material tailoring and custom designs to achieve a transformation from one configuration to another. Different engineered 4D behaviors include stimulated color change, shape morphing, and biological growth. As 4D food printing is considered an emerging application, imperatively, this article proposes new considerations and definitions in 4D food printing. Moreover, this article presents an overview of 4D food printing within the current scientific progress, status, and approaches.Publication Rapid acidification and off-flavor reduction of pea protein by fermentation with lactic acid bacteria and yeasts(2024) Zipori, Dor; Hollmann, Jana; Rigling, Marina; Zhang, Yanyan; Weiss, Agnes; Schmidt, HerbertPea protein is widely used as an alternative protein source in plant-based products. In the current study, we fermented pea protein to reduce off-flavor compounds, such as hexanal, and to produce a suitable fermentate for further processing. Laboratory fermentations using 5% (w/v) pea protein suspension were carried out using four selected lactic acid bacteria (LAB) strains, investigating their growth and acidification capabilities in pea protein. Rapid acidification of pea protein was achieved with Lactococcus lactis subsp. lactis strain LTH 7123. Next, this strain was co-inoculated together with either the yeasts Kluyveromyces lactis LTH 7165, Yarrowia lipolytica LTH 6056, or Kluyveromyces marxianus LTH 6039. Fermentation products of the mixed starter cultures and of the single strains were further analyzed by gas chromatography coupled with mass spectrometry to quantify selected volatile flavor compounds. Fermentation with L. lactis LTH 7123 led to an increase in compounds associated with the “beany” off-flavors of peas, including hexanal. However, significant reduction in those compounds was achieved after fermentation with Y. lipolytica LTH 6056 with or without L. lactis LTH 7123. Thus, fermentation using co-cultures of LAB and yeasts strains could prove to be a valuable method for enhancing quality attributes of pea protein-based products.Publication Variations in the metabolome of unaged and aged beef from black-and-white cows and heifers by 1H NMR spectroscopy(2023) Bischof, Greta; Januschewski, Edwin; Witte, Franziska; Terjung, Nino; Heinz, Volker; Juadjur, Andreas; Gibis, Monika(1) Background: The selection of raw material and the postmortem processing of beef influence its quality, such as taste. In this study, the metabolome of beef from cows and heifers is examined for differences during aging. (2) Methods: Thirty strip loins from eight heifers and seven cows (breed code: 01–SBT) were cut into ten pieces and aged for 0, 7, 14, 21 and 28 days. Samples from the left strip loins were wet-aged in vacuum, while samples from right strip loins were dry-aged at 2 °C and 75% relative humidity. The beef samples were extracted with methanol–chloroform–water, and the polar fraction was used for 1H NMR analysis. (3) Results: The PCA and OPLS-DA showed that the metabolome of cows and heifers varied. Eight metabolites revealed significant differences (p < 0.05) in the samples from cows and heifers. The aging time and aging type of beef also affected the metabolome. Twenty-eight and 12 metabolites differed significantly (p < 0.05) with aging time and aging type, respectively. (4) Conclusions: The variations between cows and heifers and aging time affect the metabolome of beef. By comparison, the influence of aging type is present but less pronounced.