Institut für Chemie
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/4
Browse
Browsing Institut für Chemie by Person "Rekowski, Szymon"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Publication Neuartige Kupfer-katalysierte und übergangsmetallfreie Methoden zum Aufbau von Heterocyclen(2022) Rekowski, Szymon; Beifuss, UweHeterocycles are the backbones of numerous drugs and are therefore of great importance in medicinal chemistry. As a result, there is an inevitably high demand for methods to synthesize heterocycles. The requirements for new methods for the synthesis of heterocycles are nowadays very high, as they must not only be efficient and selective, but also sustainable. These prerequisites can be met by both transition metal-free and transition metal-catalyzed reactions. Thus, the transition metal-free preparation of a variety of different heterocycles can be achieved by radical, cationic and anionic cyclizations as well as by pericyclic reactions. Recently, the importance of electrochemical and photochemical methods in heterocyclic synthesis has been increasing very rapidly. In transition metal-catalyzed heterocycle synthesis, Pd- and Cu-catalysts in particular play a prominent role. For the Pd-catalyzed assembly of N-heterocycles, the intramolecular Buchwald-Hartwig amination is especially noteworthy. It is now known that many Pd-catalyzed reactions can also be carried out with Cu-catalysts. In view of the fact that Cu-catalysts are much cheaper due to the higher abundance of Cu, and that expensive ligands can usually be omitted to carry out Cu-catalyzed reactions, their enormous importance in heterocyclic synthesis is easy to understand. For example, many N-heterocycles can be prepared by intramolecular Ullmann reactions with excellent yields and high selectivities. Here, bisfunctionalized substrates with two centers of different reactivity play a major role. The aim of the present work was to develop new efficient and highly selective synthetic methods for the construction of relevant N- or O-heterocycles. In particular, Cu-catalyzed reactions with bisfunctionalized substrates were to be developed. The investigation included determining whether the corresponding reactions can also be carried out in the absence of transition metal catalysts. Benzodioxines and 2,3-dihydrobenzodioxines exhibit many interesting biological properties, but the possibilities available nowadays for their synthesis are limited. Therefore, the first part of this dissertation deals with the development of a new method for the diastereospecific construction of (Z)-2-arylidene-2,3-dihydrobenzodioxines (Z)-80 (Scheme 50) by reacting 3-aryl-substituted (Z)-1,2-dibromoarylpropenes (Z)-82 with catechols 83. While the model substrate (Z)-82a (R1 = Ph) can be prepared by reduction and subsequent bromination of a-bromocinnamaldehyde, the remaining substrates (Z)-82 were prepared in three steps from the corresponding benzaldehydes. Subsequent optimization of the model reaction under a wide variety of reaction conditions showed that the best results could be obtained under transition metal-free conditions. The highest yield of (Z)-80a was obtained when 1 equivalent of (Z)-82a (R1 = Ph, R2 = H) was reacted with two equivalents of 83a (R2 = H) in the presence of four equivalents of Cs2CO3 in DMF for 18 h at 140 °C. Remarkably, this transition metal-free domino reaction, which consists of an intermolecular O-allylation followed by an intramolecular O-vinylation, is highly diastereospecific: the use of (Z)-1,2-dibromo-3-phenyl-2-propene [(Z)-82a] exclusively delivers (Z)-2-benzylidene-2,3-dihydrobenzodioxines [(Z)-80a]. This high diastereospecifity was also observed in the reactions of all other substrates (Z)-82. The 2-arylidene-2,3-dihydrobenzodioxins (Z)-80 were obtained in yields up to 89%. This method tolerates different substituents on the aromatic moiety of (Z)-82 as well as different disubstituted catechols 83. DFT calculations conducted in collaboration with Prof. Bharatham, NIPER Nagar (Mohali), suggest that the intramolecular O-vinylation proceeds via an alkene intermediate rather than an alkyne intermediate. The diastereoselective conversion of the E-configured substrate (E)-82a (R1 = Ph) to the corresponding (E)-2-benzylidene-2,3-dihydrobenzodioxine [(E)-80a] supports this assumption. The second part of this work is devoted to the intramolecular Cu(I)-catalyzed cyclization of o-haloarylideneguanylhydrazone salts (E)-86 for the direct construction of N-1 unsubstituted 1H-indazoles 84 (Scheme 51). The synthesis of indazoles of this type is of particular interest to medicinal chemistry because they form the backbone of some important anticancer drugs. Substrates (E)-86 were prepared by condensation of o-halobenzaldehydes with aminoguanidine hydrochloride in yields up to 90%. Subsequent cyclization using 10 mol% CuI, 30 mol% DMEDA and 0.5 equivalents of Cs2CO3 afforded the 1H-indazoles 84 in yields up to 75%. The reactions were carried out at 120 °C in DMF for 5 h in a sealed glass tube. The method tolerated a full range of substituents on the aromatic moiety of the substrates. Based on DFT calculations done in collaboration with Prof. Bharatham, NIPER Nagar (Mohali), it is reasonable to assume that E/Z isomerization of substrate 86 occurs first, followed by metal complexation with subsequent C,N bond formation. The final hydrolysis of the 1H-indazole-1-carboximidamide yields the N-1 unsubstituted 1H-indazole 84.