Institut für Lebensmittelwissenschaft und Biotechnologie
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/6
Browse
Browsing Institut für Lebensmittelwissenschaft und Biotechnologie by Person "Anker, Marvin"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Online monitoring of sourdough fermentation using a gas sensor array with multivariate data analysis(2023) Anker, Marvin; Yousefi-Darani, Abdolrahim; Zettel, Viktoria; Paquet-Durand, Olivier; Hitzmann, Bernd; Krupitzer, ChristianSourdough can improve bakery products’ shelf life, sensory properties, and nutrient composition. To ensure high-quality sourdough, the fermentation has to be monitored. The characteristic process variables for sourdough fermentation are pH and the degree of acidity measured as total titratable acidity (TTA). The time- and cost-intensive offline measurement of process variables can be improved by utilizing online gas measurements in prediction models. Therefore, a gas sensor array (GSA) system was used to monitor the fermentation process of sourdough online by correlation of exhaust gas data with offline measurement values of the process variables. Three methods were tested to utilize the extracted features from GSA to create the models. The most robust prediction models were achieved using a PCA (Principal Component Analysis) on all features and combined two fermentations. The calibrations with the extracted features had a percentage root mean square error (RMSE) from 1.4% to 12% for the pH and from 2.7% to 9.3% for the TTA. The coefficient of determination (R2) for these calibrations was 0.94 to 0.998 for the pH and 0.947 to 0.994 for the TTA. The obtained results indicate that the online measurement of exhaust gas from sourdough fermentations with gas sensor arrays can be a cheap and efficient application to predict pH and TTA.Publication Using a machine learning regression approach to predict the aroma partitioning in dairy matrices(2024) Anker, Marvin; Borsum, Christine; Zhang, Youfeng; Zhang, Yanyan; Krupitzer, ChristianAroma partitioning in food is a challenging area of research due to the contribution of several physical and chemical factors that affect the binding and release of aroma in food matrices. The partition coefficient measured by the Kmg value refers to the partition coefficient that describes how aroma compounds distribute themselves between matrices and a gas phase, such as between different components of a food matrix and air. This study introduces a regression approach to predict the Kmg value of aroma compounds of a wide range of physicochemical properties in dairy matrices representing products of different compositions and/or processing. The approach consists of data cleaning, grouping based on the temperature of Kmg analysis, pre-processing (log transformation and normalization), and, finally, the development and evaluation of prediction models with regression methods. We compared regression analysis with linear regression (LR) to five machine-learning-based regression algorithms: Random Forest Regressor (RFR), Gradient Boosting Regression (GBR), Extreme Gradient Boosting (XGBoost, XGB), Support Vector Regression (SVR), and Artificial Neural Network Regression (NNR). Explainable AI (XAI) was used to calculate feature importance and therefore identify the features that mainly contribute to the prediction. The top three features that were identified are log P, specific gravity, and molecular weight. For the prediction of the Kmg in dairy matrices, R2 scores of up to 0.99 were reached. For 37.0 °C, which resembles the temperature of the mouth, RFR delivered the best results, and, at lower temperatures of 7.0 °C, typical for a household fridge, XGB performed best. The results from the models work as a proof of concept and show the applicability of a data-driven approach with machine learning to predict the Kmg value of aroma compounds in different dairy matrices.