Browsing by Person "Born, Ute"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Publication Degradation of hop latent viroid during anaerobic digestion of infected hop harvest residues(2021) Hagemann, Michael Helmut; Born, Ute; Sprich, Elke; Seigner, Luitgardis; Oechsner, Hans; Hülsemann, Benedikt; Steinbrenner, Jörg; Winterhagen, Patrick; Lehmair, ErichThe citrus bark cracking viroid (CBCVd) was identified as causal agent for a severe stunting disease in hops. Viroids are highly stable parasitic RNAs, which can be easily transmitted by agricultural practices. Since CBCVd has recently been detected in two European countries a growing concern is that this pathogen will further spread and thereby threaten the European hop production. Biogas fermentation is used to sanitize hop harvest residues infected with pathogenic fungi. Consequently, the aim of this study was to test if biogas fermentation can contribute to viroid degradation at mesophilic (40 °C) and thermophilic (50 °C) conditions. Therefore, a duplex reverse transcription real-time PCR analysis was developed for CBCVd and HLVd detection in biogas fermentation residues. The non-pathogenic hop latent viroid (HLVd) was used as viroid model for the pathogenic CBCVd. The fermentation trials showed that HLVd was significantly degraded after 30 days at mesophilic or after 5 days at thermophilic conditions, respectively. However, sequencing revealed that HLVd was not fully degraded even after 90 days. The incubation of hop harvest residues at different temperatures between 20 and 70 °C showed that 70 °C led to a significant HLVd degradation after 1 day. In conclusion, we suggest combining 70 °C pretreatment and thermophilic fermentation for efficient viroid decontamination.Publication Prevalence, genetic diversity, and molecular detection of the apple hammerhead viroid in Germany(2025) Zikeli, Kerstin; Berwarth, Constanze; Born, Ute; Leible, Thomas; Jelkmann, Wilhelm; Hagemann, Michael HelmutIntroduction: Apple hammerhead viroid (AHVd) is an emerging plant pathogen infecting apple orchards worldwide. Its genetic variability and geographical distribution remain poorly understood, limiting effective diagnostics and management strategies. Methods: In this study, 192 samples from German apple orchards were analyzed using reverse transcription (RT) and real-time PCR, one-step RT real-time PCR, and Sanger sequencing. Next-generation sequencing (NGS) was employed on pooled RNA extracts to explore genetic diversity. Phylogenetic relationships were inferred using maximum likelihood methods, and viroid-derived small RNAs (vd-sRNAs) were identified from small RNA sequencing data. Results and discussion: AHVd was detected in 78% of samples, with prevalence varying by region: southern (82%), eastern (90%), northern (72%), and western (70%) states of Germany. Phylogenetic analysis revealed distinct clusters linked to geographical origins, indicating isolated evolutionary pathways. NGS analysis uncovered 39% inter-sample variability and 169 polymorphic positions, while Sanger sequencing of RT real-time PCR products derived from the same samples showed only 3% variability, reflecting dominant quasispecies populations. Small RNA analysis mapped 128,388 reads to the AHVd genome, identifying hotspots within and outside the rod-like structure, suggesting structural and regulatory functions of vd-sRNAs. These findings underline AHVd’s genetic diversity. The complex relationship between AHVd genetic variability and symptom expression necessitates the development of highly sensitive diagnostic tools and adaptive management strategies to effectively monitor and control its spread in apple production.Publication Viroid ecology in hops (Humulus lupulus L.): high prevalence in commercial systems but low presence in wild populations(2026) Jagani, Swati; Krönauer, Christina; Born, Ute; Hagemann, Michael Helmut; Jagani, Swati; Department of Production Systems of Horticultural Crops, University of Hohenheim, Stuttgart, Germany; Krönauer, Christina; Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Wolnzach, Germany; Born, Ute; Department of Production Systems of Horticultural Crops, University of Hohenheim, Stuttgart, Germany; Hagemann, Michael Helmut; Department of Production Systems of Horticultural Crops, University of Hohenheim, Stuttgart, GermanyIntroduction: Hop (Humulus lupulus L.), a vital crop in the brewing industry, is increasingly threatened by infections caused by viroids and viruses. The extensive use of vegetative propagation in hop cultivation facilitates the accumulation and dissemination of these pathogens. However, little is known about their prevalence and ecological behavior in non-commercial settings. This study provides a comprehensive overview of viroid and virus infections across Germany, with particular attention to their occurrence and potential transmission across commercial, settlement, and wild hop populations. Methods: Between 2020 and 2023, 418 hop leaf samples from commercial (n = 345), settlement (n = 29), and wild (n = 44) populations were collected. Viroid and virus detection was performed using RT-PCR and PCR. To investigate possible cross-species transmission and sequence variation, HSVd-positive samples from hops and nearby grapevines were further analyzed via Sanger sequencing. Results: Viroid screening revealed that the citrus bark cracking viroid (CBCVd; Cocadviroid rimocitri) was confined to commercial hop cultivation. This study also marks the first confirmed detection of hop stunt viroid (HSVd; Hostuviroid impedihumuli) in commercial hop fields in Germany. Virus screening showed that hop latent virus (HpLV; Carlavirus latenshumuli) and american hop latent virus (AHpLV; Carlavirus americanense) were exclusively found in commercial hops. Hop mosaic virus (HpMV; Carlavirus humuli) was detected across all three groups—commercial, settlement, and wild populations. Arabis mosaic virus (ArMV; Nepovirus arabis) and apple mosaic virus (ApMV; Ilarvirus ApMV) were identified in both commercial and wild hops but were absent from settlement samples. Overall, commercial hop populations exhibited the highest pathogen burden, frequently harboring multiple viroid and virus infections. These findings underscore the importance of using certified, pathogen-free planting material, implementing early detection strategies, and updating plant passport regulations to include high-risk pathogens. While prevalence estimates reflect risk-based sampling from key production regions, the study provides a solid basis for enhancing pathogen surveillance and improving preventive measures in hop cultivation.
