Browsing by Person "Brandt, Christian"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Publication Compound-specific 13C fingerprinting for sediment source allocationin intensely cultivated catchments(2018) Brandt, Christian; Cadisch, GeorgThe loss of fertile topsoil due to soil degradation and erosion not only threatens crop productivity, but also induces sedimentation of aquatic systems and leads to social-, economical-, and environmental problems in many regions of the world. The abandonment of shifting cultivation in favor of intensive mono-cultural cropping systems on sloping land accompanied by rainfall detachment and surface runoff induced soil erosion is one of the most pressing environmental and agricultural problems in the highlands of Southeast Asia. Informed soil management strategies require knowledge on the main sediment sources in a catchment. Compound-specific stable isotope (CSSI) fingerprinting, based on δ13C values of fatty acid methyl ester (FAME), allows identifying hot-spots of soil erosion, particularly with regard to assigning sediment sources to actual land uses. In this regard, we assessed the potential of the CSSI – fingerprinting approach to assign sediment sources to specific land use types in various intensely cultivated catchments. In a first step we improved the statistical procedure to identify sediment sources in a heterogeneous agricultural catchment in the mountainous northwestern region of Vietnam. In a next step we tested the CSSI-fingerprinting under different agro-ecological conditions to evaluate its global applicability, using an aligned protocol. Finally, we integrated CSSI-fingerprinting and fallout radio nuclide (FRN, 210Pbex, 137Cs) analysis to estimate past net erosion rates linked to land use types. In conclusion, the integrated Bayesian SIAR-CSSI approach was an appropriate tool to identify and assign sediment sources to actual land uses in small and heterogeneous catchments. This methodology was also suitable to identify hot-spots of soil erosion in contrasting catchments of different sizes and agro-ecological zones. Integrating CSSI-fingerprinting and fallout radio nuclide analysis to determine past sediment budgets provided insight into the impact of specific land use changes on soil retrogression and degradation. Such knowledge is of great value for informed and effective soil conservation through evidence-based land management and decision making.Publication Growth of lettuce in hydroponics fed with aerobic- and anaerobic–aerobic-treated domestic wastewater(2023) Germer, Jörn; Brandt, Christian; Rasche, Frank; Dockhorn, Thomas; Bliedung, AlexaReusing water and nutrients from municipal wastewater can conserve resources and reduce wastewater treatment costs. In this study, the suitability of different qualities of treated wastewater for plant production in a hydroponic flow-through system was investigated. Lettuce (Lactuca sativa L.) was grown in hydroponic lines fed with treated wastewater, i.e., conventional effluent from aerobic wastewater treatment by the activated sludge process (CE), ozonised CE (CEO), anaerobically pre-treated and nitrified wastewater (AN) and biological activated carbon filtered AN (ANC) in comparison with a modified Hoagland nutrient solution. In CEO, AN and ANC, the lettuce reached a similar weight and elemental composition as that in HS. The low N and P concentrations in CE and CEO were quickly depleted, resulting in limited plant development at the ends of these lines. The lower water content in the CE shoots was probably related to hypoxia that occurred at higher temperatures. In the CEO line, this condition did not arise due to the constant decay of O3. At lower temperatures, the CEO shoot dry weight was 90% higher than that in CE. This was possibly an effect of residual ozone and/or oxygen supersaturation. AN produced the highest yield, while carbon filtration lowered the content of cations in ANC, inducing deficiency of Fe > Mn > Cu > Zn > K. Coupling wastewater treatment with hydroponics allows for efficient nutrient recovery, and thus could reduce the energy and reactor volume needed for N and P elimination.