Repository logo
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
    Communities & Collections
    All of hohPublica
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
  1. Home
  2. Person

Browsing by Person "Gutai, Benjamin"

Type the first few letters and click on the Browse button
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Assessing impacts of crop area expansion and crop-livestock integration on ecosystem functions in African savannas using the coupled LUCIA and LIVSIM models
    (2025) Gutai, Benjamin; Marohn, Carsten; Bateki, Christian Adjogo; Asch, Folkard; Gutai, Benjamin; Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Garbenstr. 13, 70599, Stuttgart, Germany; Marohn, Carsten; Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Garbenstr. 13, 70599, Stuttgart, Germany; Bateki, Christian Adjogo; Section Animal Husbandry in the Tropics and Subtropics, University of Kassel and University of Göttingen, Steinstr. 19, 37213, Witzenhausen, Germany; Asch, Folkard; Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Garbenstr. 13, 70599, Stuttgart, Germany
    Large-scale land use change (LUC) of African Guinea savannas to crop fields is expected to cause negative impacts on ecosystem functions (ESF) and long term land productivity. The complex interactions of key processes in savannas evoked by LUC calls for a process-based modelling approach. We employed the dynamically coupled Land Use Change Impact Assessment (LUCIA) model and the Livestock Simulator (LIVSIM) which represent LUC impacts on soil processes, landscape-scale matter fluxes, seasonal grass and crop growth, and livestock nutrition, production and reproduction, depending on seasonal feed availability and quality on accessible pastures. For a rangeland in Borana, Ethiopia, two different LUC scenarios were evaluated in comparison to the baseline of traditional pasture-based land use. In the intensive LUC scenario 52% of grassland was converted into unfertilized maize fields, inaccessible for livestock. The integrated LUC scenario of the same grassland conversion rate allowed feeding maize straw and provided high-quality feed reserves from seasonally managed pastures. LUC in the intensive LUC scenario led to declining yields in the second year after conversion. Feed production on the remaining rangeland patches was insufficient for livestock nutrition, causing drops of herd body weight and herd size particularly in drought years. Resilience of herd performance to LUC was enhanced in the integrated LUC scenario when feeding maize straw and high-quality feed reserves. In both LUC scenarios, topsoil organic carbon storage decreased after ploughing shrub grassland for cultivation, and so did soil water storage capacity due to soil pore destruction. Soil erosion of less than one cm after 10 years occurred under cultivation. The simulation results indicated that the well validated model framework could predict impacts of LUC and simple crop-livestock integration on savanna ESFs, grass growth dynamics and livestock production during seasonal and inter-annual rainfall variation. This study lays the foundation for further land use scenario simulations to improve the understanding of benefits and risks caused by savanna grassland conversion.

  • Contact
  • FAQ
  • Cookie settings
  • Imprint/Privacy policy