Repository logo
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
    Communities & Collections
    All of hohPublica
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
  1. Home
  2. Person

Browsing by Person "Kounev, Samuel"

Type the first few letters and click on the Browse button
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    CortexVR: Immersive analysis and training of cognitive executive functions of soccer players using virtual reality and machine learning
    (2022) Krupitzer, Christian; Naber, Jens; Stauffert, Jan-Philipp; Mayer, Jan; Spielmann, Jan; Ehmann, Paul; Boci, Noel; Bürkle, Maurice; Ho, André; Komorek, Clemens; Heinickel, Felix; Kounev, Samuel; Becker, Christian; Latoschik, Marc Erich
    Goal: This paper presents an immersive Virtual Reality (VR) system to analyze and train Executive Functions (EFs) of soccer players. EFs are important cognitive functions for athletes. They are a relevant quality that distinguishes amateurs from professionals. Method: The system is based on immersive technology, hence, the user interacts naturally and experiences a training session in a virtual world. The proposed system has a modular design supporting the extension of various so-called game modes. Game modes combine selected game mechanics with specific simulation content to target particular training aspects. The system architecture decouples selection/parameterization and analysis of training sessions via a coaching app from an Unity3D-based VR simulation core. Monitoring of user performance and progress is recorded by a database that sends the necessary feedback to the coaching app for analysis. Results: The system is tested for VR-critical performance criteria to reveal the usefulness of a new interaction paradigm in the cognitive training and analysis of EFs. Subjective ratings for overall usability show that the design as VR application enhances the user experience compared to a traditional desktop app; whereas the new, unfamiliar interaction paradigm does not negatively impact the effort for using the application. Conclusion: The system can provide immersive training of EF in a fully virtual environment, eliminating potential distraction. It further provides an easy-to-use analyzes tool to compare user but also an automatic, adaptive training mode.
  • Loading...
    Thumbnail Image
    Publication
    Optimizing storage assignment, order picking, and their interaction in mezzanine warehouses
    (2023) Lesch, Veronika; Müller, Patrick B.M.; Krämer, Moritz; Hadry, Marius; Kounev, Samuel; Krupitzer, Christian; Lesch, Veronika; University of Würzburg, Würzburg, Germany; Müller, Patrick B.M.; University of Applied Sciences Würzburg-Schweinfurt, Würzburg, Germany; Krämer, Moritz; io-consultants GmbH, Co. KG, Heidelberg, Germany; Hadry, Marius; University of Würzburg, Würzburg, Germany; Kounev, Samuel; University of Würzburg, Würzburg, Germany; Krupitzer, Christian; University of Hohenheim, Stuttgart, Germany
    In warehouses, order picking is known to be the most labor-intensive and costly task in which the employees account for a large part of the warehouse performance. Hence, many approaches exist, that optimize the order picking process based on diverse economic criteria. However, most of these approaches focus on a single economic objective at once and disregard ergonomic criteria in their optimization. Further, the influence of the placement of the items to be picked is underestimated and accordingly, too little attention is paid to the interdependence of these two problems. In this work, we aim at optimizing the storage assignment and the order picking problem within mezzanine warehouse with regards to their reciprocal influence. We propose a customized version of the Non-dominated Sorting Genetic Algorithm II (NSGA-II) for optimizing the storage assignment problem as well as an Ant Colony Optimization (ACO) algorithm for optimizing the order picking problem. Both algorithms incorporate multiple economic and ergonomic constraints simultaneously. Furthermore, the algorithms incorporate knowledge about the interdependence between both problems, aiming to improve the overall warehouse performance. Our evaluation results show that our proposed algorithms return better storage assignments and order pick routes compared to commonly used techniques for the following quality indicators for comparing Pareto fronts: Coverage, Generational Distance, Euclidian Distance, Pareto Front Size, and Inverted Generational Distance. Additionally, the evaluation regarding the interaction of both algorithms shows a better performance when combining both proposed algorithms.

  • Contact
  • FAQ
  • Cookie settings
  • Imprint/Privacy policy