Repository logo
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
    Communities & Collections
    All of hohPublica
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
  1. Home
  2. Person

Browsing by Person "Leible, Malte"

Type the first few letters and click on the Browse button
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Characterization of the aroma profile of food smoke at controllable pyrolysis temperatures
    (2023) Rigling, Marina; Höckmeier, Laura; Leible, Malte; Herrmann, Kurt; Gibis, Monika; Weiss, Jochen; Zhang, Yanyan
    Smoking is used to give food its typical aroma and to obtain the desired techno-functional properties of the product. To gain a deeper knowledge of the whole process of food smoking, a controllable smoking process was developed, and the influence of wood pyrolysis temperature (150–900 °C) on the volatile compounds in the smoking chamber atmosphere was investigated. The aroma profile of smoke was decoded by headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). Subsequently, the correlations in the most important substance classes, as well as in individual target components, were investigated by the Pearson test. Phenols and lactones showed an increase over the entire applied temperature range (rT = 0.94 and rT = 0.90), whereas furans and carbonyls showed no strict temperature dependence (rT < 0.6). Investigations on single aroma compounds showed that not all compounds of one substance class showed the same behavior, e.g., guaiacol showed no significant increase over the applied pyrolysis temperature, whereas syringol and hydoxyacetone showed a plateau after 450 °C, and phenol and cyclotene increased linear over the applied temperature range. These findings will help to better understand the production of aroma-active compounds during smoke generation in order to meet consumers preferences.
  • Loading...
    Thumbnail Image
    Publication
    Smoldering smoke conditions affect contents of monochloropropanediols in Frankfurter-type sausages
    (2025) Albert, Christopher; Leible, Malte; Döring, Maik; Jira, Wolfgang; Gibis, Monika; Albert, Christopher; Department of Safety and Quality of Meat, Max Rubner-Institut (MRI), E.-C.-Baumann-Straße 20, Kulmbach, Germany; Leible, Malte; Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 25, Stuttgart, Germany; Döring, Maik; National Reference Centre for Authentic Food, Max Rubner-Institut (MRI), E.-C.-Baumann-Straße 20, Kulmbach, Germany; Jira, Wolfgang; Department of Safety and Quality of Meat, Max Rubner-Institut (MRI), E.-C.-Baumann-Straße 20, Kulmbach, Germany; Gibis, Monika; Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 25, Stuttgart, Germany
    Statistically designed smoldering smoke experiments with Frankfurter-type sausages were performed using 14 setups (two replicates, each). The target smoke generation temperatures (150, 300, 450, 600, 750, and 900 °C) were adjusted by air supply, and the actual temperatures were monitored over a smoking period of 3–15 min using three sensors placed in the ember bed. The contents of 3- and 2-monochloropropanediols (MCPD) in Frankfurters were analyzed and ranged between 2.7–60.6 and 0.2–1.7 μg/kg, respectively. The 3-MCPD/2-MCPD ratio ranged from 27 to 46 and was noticeably higher than reported for thermally processed foods. The MCPD levels were correlated with values derived from the temperature curves and the smoking time. For the first time, a correlation between the smoke generation temperature and the MCPD content was proven. Pearson’s correlations were obtained for the mean temperature of the three sensors over all time points with 0.921 (3-MCPD) and 0.947 (2-MCPD).

  • Contact
  • FAQ
  • Cookie settings
  • Imprint/Privacy policy