Browsing by Person "Merkt, Nikolaus"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Publication Application of infrared imaging for early detection of downy mildew (Plasmopara viticola) in grapevine(2022) Zia-Khan, Shamaila; Kleb, Melissa; Merkt, Nikolaus; Schock, Steffen; Müller, JoachimLate detection of fungal infection is the main cause of inadequate disease control, affecting fruit quality and reducing yield of grapevine. Therefore, infrared imagery as a remote sensing technique was investigated in this study as a potential tool for early disease detection. Experiments were conducted under field conditions, and the effects of temporal and spatial variability in the leaf temperature of grapevine infected by Plasmopara viticola were studied. Evidence of the grapevine’s thermal response is a 3.2 °C increase in leaf temperature that occurred long before visible symptoms appeared. In our study, a correlation of R2 = 0.76 at high significance level (p ≤ 0.001) was found between disease severity and MTD. Since the pathogen attack alters plant metabolic activities and stomatal conductance, the sensitivity of leaf temperature to leaf transpiration is high and can be used to monitor irregularities in temperature at an early stage of pathogen development.Publication Bacterial microbiota diversity and composition in red and white wines correlate with plant-derived DNA contributions and botrytis infection(2020) Bubeck, Alena M.; Preiss, Lena; Jung, Anna; Dörner, Elisabeth; Podlesny, Daniel; Kulis, Marija; Maddox, Cynthia; Arze, Cesar; Zörb, Christian; Merkt, Nikolaus; Fricke, Florian W.Wine is a globally produced, marketed and consumed alcoholic beverage, which is valued for its aromatic and qualitative complexity and variation. These properties are partially attributable to the bacterial involvement in the fermentation process. However, the organizational principles and dynamic changes of the bacterial wine microbiota remain poorly understood, especially in the context of red and white wine variations and environmental stress factors. Here, we determined relative and absolute bacterial microbiota compositions from six distinct cultivars during the first week of fermentation by quantitative and qualitative 16S rRNA gene amplification and amplicon sequencing. All wines harboured complex and variable bacterial communities, with Tatumella as the most abundant genus across all batches, but red wines were characterized by higher bacterial diversity and increased relative and absolute abundance of lactic and acetic acid bacteria (LAB/AAB) and bacterial taxa of predicted environmental origin. Microbial diversity was positively correlated with plant-derived DNA concentrations in the wine and Botrytis cinerea infection before harvest. Our findings suggest that exogenous factors, such as procedural differences between red and white wine production and environmental stress on grape integrity, can increase bacterial diversity and specific bacterial taxa in wine, with potential consequences for wine quality and aroma.Publication Entwicklung innovativer Pflanzenschutzprodukte und -verfahren als umweltfreundliche Alternativen zur Bekämpfung von Mehltaupilzen : Bericht im Rahmen des Forschungsprojektes: „Silizium als Aktivator bei Kulturpflanzen“(2019) Raupp, Manfred G.; Weinmann, Markus; Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e. V. (AiF) Projekt GmbH, Berlin; Madora GmbH, Lörrach; Römheld, Volker; Neumann, Günter; Blaich, Rolf; Merkt, NikolausPowdery mildews are among the most important diseases in many crop plants. In all sectors of crop production (agriculture, viticulture, horticulture and orchards) powdery mildew fungi can cause severe damage under field as well as greenhouse conditions. Although organic synthetic fungicides have been used to combat powdery mildews in conventional and integrated agriculture for decades, organic farming lacks effective alternatives to the ecologically questionable sulfur fungicides. Yet, also for integrated or conventional crop production, alternatives or supplements for a reduction and more effective use of synthetic fungicides would be desirable to optimize the production of high quality food with the help of environmentally friendly means. Objective of the present work was the development of innovative crop protection products and application strategies to combat powdery mildew fungi with respect to the knowledge on resistance-enhancing effects of an improved silicon (Si), manganese (Mn) and zinc (Zn) supply to the plants. Furthermore, various plant extracts have recently received renewed attention. Among other active natural agents, garlic (Allium sativum L.) is known for its fungitoxic effect and at the same time high Mn and Zn contents. With the present work, an overview of possible approaches to control powdery mildew in grapevine by use of Si, Mn, Zn and plant extracts from garlic has been elaborated in greenhouse experiments. In this regard, the physiological significance of Si, Mn and Zn for the expression and strengthening of plant own resistance mechanisms was distinguished from the effectiveness of spray applications for forming passive silicate crusts as mechanical infection barriers. The physiological Si status of the plants could be clearly improved only by soil rather than foliar application of silicates. Regarding the soil application of silicates, however, no practical applications are known, how silicon fertilizers can be distributed under field conditions in the soil and brought into the rhizosphere to continuously ensure high rates of Si uptake. There is also still considerable uncertainty whether the soil application of silicates in non-Si accumulators, such as grapevines, can result in sufficient Si uptake for an effective expression of resistance mechanisms. The most impressive effects in the control of powdery mildew were achieved with the spray application of potassium silicate in combination with wetting agents to form silicate crusts on the leaf surface. The positive influence of Mn and Zn on the effectiveness of spray applications of potassium silicate and the adequate compatibility of Mn and Zn chelates with potassium silicate suggest that the interactions between Si, Mn and Zn should be considered for further product development. The application of garlic extract did not result in sufficient efficiency, although protective and curative properties could be observed. Allicin, supposed to be the active ingredient of garlic extract, has a broad spectrum of antimicrobial activity and is one of the few agents for which no development of resistance has been found in microorganisms so far. Therefore, the interest in this agent for the development of biological plant protection products is expected to increase.