Browsing by Person "Meyr, Herbert"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Publication Biogas plant optimization by increasing its exibility considering uncertain revenues(2019) Meyr, Herbert; Fichtner, StephanIncreasing shares of volatile energy resources like wind and solar energy will require exibly schedulable energy resources to compensate for their volatility. Biogas plants can produce their energy exibly and on demand, if their design is adjusted adequately. By doing so, the biogas plant operator has the opportunity to generate more earnings by producing and selling electricity in higher price periods. In order to achieve a exibly schedulable biogas plant, the design of this plant has to be adjusted to decouple the biogas and electricity production. Therefore, biogas storage possibilities and additional electrical capacity are necessary. The investment decision about the size of the biogas storage and the additional electrical capacity depends on the uctuation of energy market prices and the availability of governmental subsidies. This work presents an approach supporting investment decisions to increase the exibility of a biogas plant by installing gas storages and additional electrical capacities under consideration of revenues out of direct marketing at the day-ahead market. In order to support the strategic, long-term investment decisions, an operative plant schedule for the future, considering different plant designs given as investment strategies, using a mixed-integer linear programming (MILP) model in an uncertain environment is optimized. The different designs can be evaluated by calculating the net present value (NPV). Moreover, an analysis concerning current dynamics and uncertainties within spot market prices is executed. Furthermore, the in uences concerning the variation of spot market prices compared to the influence of governmental subsidies, in particular, the exibility premium, are revealed by computational results for a fictional case example, which is based on a biogas plant in southern Germany. In addition, the robustness of the determined solution is analyzed with respect to uncertainties.Publication Simultaneous lotsizing and scheduling - extensions and solution approaches(2018) Wörbelauer, Martin; Meyr, HerbertThe present thesis focuses on simultaneous lotsizing and scheduling. A comprehensive review of the literature is presented in which the historical development of the subject and the current research gaps are, based on a classification scheme, described. Additionally, a review focusing on so-called „secondary resources“ (e.g., setup operators or raw materials), which are considered alongside the primary production resource, is provided. The insights on different types of secondary resources help to develop a new model formulation generalizing and extending the currently used approaches, which are specific to certain settings. Some illustrative examples demonstrate the functional principle and flexibility of this new formulation which can thus be used in a wide range of applications. Finally, a new heuristic to solve large-scaled simultaneous lotsizing and scheduling problems is presented. The heuristic creates a modified multi-line master problem by aggregating products into groups. The resulting problem is less complex and its solution can be used to define single-line sub problems. These sub problems are solved by heuristics present in the literature and the results are then combined to form a solution to the original problem. Numerical tests show the applicability of the aforementioned approach to solve problems of practical relevance.Publication Strategic network planning in biomass-based supply chains(2021) Fichtner, Stephan; Meyr, HerbertFossil resources are limited and will run short. Moreover, the extensive usage of fossil resources is discussed as a key driver for climate change which means that a changeover in basic economic and ecological thinking is necessary. Especially for energy production, there has to be a movement away from the usage of fossil resources and towards renewable resources like wind, water, sun, or biomass. Within the first part of this work a structured review of recent literature on the long-term, strategic planning of biomass-based supply chains is provided. Therefore, in the first step, the overall research field “bioeconomy” by means of the various utilization pathways of biomass is structured and the demand-oriented view of supply chain management models and the supply-oriented view of bioeconomy are combined. In the second step, a literature review of operations research models and methods for strategic supply chain planning in biomass-based industries are provided. Thirdly, trends are identified and conclusions about research gaps are drawn. One of the identified research gaps is to make biomass-based supply chains profitable on their own, i.e., without governmental subsidies. Therefore, new optimization models are necessary, which should be as close to reality as possible, by for example considering risks and actual surrounding constraints concerning the legal framework. Within the second part of this work, an approach for strategic optimization of biogas plants considering increased flexibility is developed. Biogas plants can produce their energy flexibly and on-demand if their design is adjusted adequately. In order to achieve a flexibly schedulable biogas plant, the design of this plant has to be adapted to decouple the biogas and electricity production. Therefore, biogas storage possibilities and additional electrical capacity are necessary. The investment decision about the size of the biogas storage and the additional electrical capacity depends on the fluctuation of energy market prices and the availability of governmental subsidies. This work presents an approach supporting investment decisions to increase the flexibility of a biogas plant by installing gas storages and additional electrical capacities under consideration of revenues out of direct marketing at the day-ahead market. In order to support the strategic, long-term investment decisions, an operative plant schedule for the future, considering different plant designs given as investment strategies, using a mixed-integer linear programming (MILP) model in an uncertain environment is optimized. The different designs can be evaluated by calculating the net present value (NPV). Moreover, an analysis concerning current dynamics and uncertainties within spot market prices is executed. Furthermore, the influences concerning the variation of spot market prices compared to the influence of governmental subsidies, in particular, the flexibility premium, are revealed by computational results. Besides, the robustness of the determined solution is analyzed concerning uncertainties. The focus of the third part of the work is to consider variable substrate feeding in the mentioned optimization approach because it is expected that variable substrate feeding and thus a demand-oriented biogas production can influence the optimized plant design. In order to support this extension, an operative plant schedule for the future, considering (non-) linear technical characteristics of the biogas plant and the legal framework is optimized. Therefore, mixed-integer linear programming models with integrated approximation approaches of non-linear parts, representing the biogas production rates, are constructed. Furthermore, the influences of fluctuating spot market prices, governmental subsidies, and biomass feedstock prices on the decisions are analyzed for a fictional case example, which is based on a biogas plant in southern Germany. These numerical experiments show that variable substrate feeding can play a decisive role during the optimization of a biogas plant schedule as part of a long-term design optimization. However, the size of the strategic optimization problem makes the use of a heuristic solution algorithm necessary.