Browsing by Person "Mpanga, Isaac K."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Publication Effectiveness of bio-effectors on maize, wheat and tomato performance and phosphorus acquisition from greenhouse to field scales in Europe and Israel: a meta-analysis(2024) Nkebiwe, Peteh Mehdi; Stevens Lekfeldt, Jonas D.; Symanczik, Sarah; Thonar, Cécile; Mäder, Paul; Bar-Tal, Asher; Halpern, Moshe; Biró, Borbala; Bradáčová, Klára; Caniullan, Pedro C.; Choudhary, Krishna K.; Cozzolino, Vincenza; Di Stasio, Emilio; Dobczinski, Stefan; Geistlinger, Joerg; Lüthi, Angelika; Gómez-Muñoz, Beatriz; Kandeler, Ellen; Kolberg, Flora; Kotroczó, Zsolt; Kulhanek, Martin; Mercl, Filip; Tamir, Guy; Moradtalab, Narges; Piccolo, Alessandro; Maggio, Albino; Nassal, Dinah; Szalai, Magdolna Zita; Juhos, Katalin; Fora, Ciprian G.; Florea, Andreea; Poşta, Gheorghe; Lauer, Karl Fritz; Toth, Brigitta; Tlustoš, Pavel; Mpanga, Isaac K.; Weber, Nino; Weinmann, Markus; Yermiyahu, Uri; Magid, Jakob; Müller, Torsten; Neumann, Günter; Ludewig, Uwe; de Neergaard, AndreasBiostimulants (Bio-effectors, BEs) comprise plant growth-promoting microorganisms and active natural substances that promote plant nutrient-acquisition, stress resilience, growth, crop quality and yield. Unfortunately, the effectiveness of BEs, particularly under field conditions, appears highly variable and poorly quantified. Using random model meta-analyses tools, we summarize the effects of 107 BE treatments on the performance of major crops, mainly conducted within the EU-funded project BIOFECTOR with a focus on phosphorus (P) nutrition, over five years. Our analyses comprised 94 controlled pot and 47 field experiments under different geoclimatic conditions, with variable stress levels across European countries and Israel. The results show an average growth/yield increase by 9.3% (n=945), with substantial differences between crops (tomato > maize > wheat) and growth conditions (controlled nursery + field (Seed germination and nursery under controlled conditions and young plants transplanted to the field) > controlled > field). Average crop growth responses were independent of BE type, P fertilizer type, soil pH and plant-available soil P (water-P, Olsen-P or Calcium acetate lactate-P). BE effectiveness profited from manure and other organic fertilizers, increasing soil pH and presence of abiotic stresses (cold, drought/heat or salinity). Systematic meta-studies based on published literature commonly face the inherent problem of publication bias where the most suspected form is the selective publication of statistically significant results. In this meta-analysis, however, the results obtained from all experiments within the project are included. Therefore, it is free of publication bias. In contrast to reviews of published literature, our unique study design is based on a common standardized protocol which applies to all experiments conducted within the project to reduce sources of variability. Based on data of crop growth, yield and P acquisition, we conclude that application of BEs can save fertilizer resources in the future, but the efficiency of BE application depends on cropping systems and environments.Publication Grape pomace's potential on semi‐arid soil health enhances performance of maize, wheat, and grape crops(2023) Mpanga, Isaac K.; Neumann, Günter; Brown, Judith K.; Blankinship, Joseph; Tronstad, Russell; Idowu, OmololuBackground: Grape pomace (GP) is a by-product of wineries after filtering the grape juice for wine production. GP contains seeds, pulp, skin, and stalks with acidic properties, and it is normally composted before using as a soil amendment. However, composting GP requires more time, labor, and equipment; furthermore, composting loses some of the desirable organic acids for arid soils. The acidic properties of these organic acids and the plant nutrients in GP make it a desirable amendment for arid soils in both non-composted and composted forms. Aim: This study investigates the potential of directly applying GP as a soil amendment and its impact on arid soil health and plant performance. Methods: To test the potential of non-composted GP as a soil amendment, greenhouse and field studies were conducted by combining GP with existing management practices (manure application for soil used in the greenhouse study and fertigation for the field study) to assess the effects of GP on soil health and crop (maize, wheat, and grape) performance. Results: Adding 5% GP to an alkaline soil significantly increased maize and wheat growth and shoot nutrient concentrations in the greenhouse and grapes in the field (48% yield increase). The significance of GP on maize, wheat, and grapes was associated with soil nutrient enhancements (i.e., nutrients supplied, increase in organic matter and microbial biomass increase, reduction in pH, and better nutrient mobilization). Conclusion: GP has the potential for direct use as a soil amendment for soil and crop health improvement, especially in arid soils with high pH and limited soil organic matter.