Repository logo
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
    Communities & Collections
    All of hohPublica
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
  1. Home
  2. Person

Browsing by Person "Neuwald, Daniel Alexandre"

Type the first few letters and click on the Browse button
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Impact of different storage conditions with combined use of ethylene blocker on ‘Shalimar’ apple variety
    (2024) Khera, Kartik; Büchele, Felix; Wood, Rachael Maree; Thewes, Fabio Rodrigo; Wagner, Roger; Hagemann, Michael Helmut; Neuwald, Daniel Alexandre
    This research investigates the impact of storage conditions on the quality and preservation of 'Shalimar' apples, a relatively new cultivar known for its resistance to apple scab and powdery mildew. The study explores the efficacy of different storage techniques such as regular atmosphere (RA), controlled atmosphere (CA), and dynamic controlled atmosphere with CO2 Monitoring (DCA-CD), as well as the integration of 1-methylcyclopropene (1-MCP) at different storage temperatures (1 °C and 3 °C). Various fruit quality parameters were monitored under different storage conditions, including firmness, titratable acidity, total soluble solids, background color, respiration, ethylene production, and volatile compounds. The results indicate that the controlled atmosphere (CA) at 1 °C emerges as an efficient method for long-term storage. However, it is noted that CA storage may impact the apple aroma, emphasizing the need for a balance between preservation and consumer acceptability. On the other hand, DCA-CD at variable temperatures (approximately 2.5 °C) offers a promising approach for maintaining fruit quality and a higher concentration of volatile compounds. Integrating 1-MCP enhances firmness, but its impact varies across storage conditions. Principal component analysis (PCA) provides insights into the relationships between storage conditions, fruit quality, and volatile compounds. This study contributes valuable insights into optimizing storage strategies for ‘Shalimar’ apples, addressing sustainability and quality preservation in apple production.
  • Loading...
    Thumbnail Image
    Publication
    Metabolic profiling of ‘Elstar’ and ‘Nicoter’ apples: impact of storage time, dynamic controlled atmosphere and 1-MCP treatment
    (2024) Thewes, Fabio Rodrigo; Büchele, Felix; Uhlmann, Lilian Osmari; Lugaresi, Adriana; de Oliveria Neuwald, Daiane Quadros; Brackmann, Auri; Both, Vanderlei; Wagner, Roger; Neuwald, Daniel Alexandre; Yao, Jia-Long
    The aim of this work was to evaluate the effect of CA and DCA on sugars, tricarboxylic acid cycle (TCA), anaerobic metabolism and some volatile compounds of ‘Elstar’ and ‘Nicoter’ apples. This study also aimed to evaluate the effect of ethylene action blocking by 1-MCP (0.650 ppm). The storage conditions tested for both cultivars were (1) CA; (2) DCA-CF; (3) DCA-RQ 1.3; (4) DCA-RQ 1.5; (5) DCA-CD 1.1; and (6) DCA-CD 1.3. The lowest oxygen limit (LOL) was higher for the ‘Nicoter’ apples, and the three DCA methods were able to detect this difference between the cultivars. Sorbitol had a trend of accumulation when the fruit was stored under DCA-RQ and DCA-CD, especially in higher RQ and CD, showing a negative Pearson correlation with the oxygen partial pressure over the storage period. The 1-MCP treatment induced sorbitol accumulation even when the fruit was stored under CA. The TCA intermediaries, such as citrate, 2-oxoglutarate, succinate, fumarate and oxaloacetate, were the most affected by the atmosphere conditions and the 1-MCP treatment for both cultivars. Malic acid was more affected by the storage time than the atmosphere conditions. Succinate and fumarate had an accumulation trend when the fruit was stored under DCA-RQ.

  • Contact
  • FAQ
  • Cookie settings
  • Imprint/Privacy policy