Browsing by Person "Paquet-Durand, Olivier"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Publication Advancing 2D fluorescence online monitoring in microtiter plates by separating scattered light and fluorescence measurement, using a tunable emission monochromator(2023) Berg, Christoph; Busch, Selma; Alawiyah, Muthia Dewi; Finger, Maurice; Ihling, Nina; Paquet-Durand, Olivier; Hitzmann, Bernd; Büchs, JochenOnline fluorescence monitoring has become a key technology in modern bioprocess development, as it provides in‐depth process knowledge at comparably low costs. In particular, the technology is widely established for high‐throughput microbioreactor cultivation systems, due to its noninvasive character. For microtiter plates, previously also multi‐wavelength 2D fluorescence monitoring was developed. To overcome an observed limitation of fluorescence sensitivity, this study presents a modified spectroscopic setup, including a tunable emission monochromator. The new optical component enables the separation of the scattered and fluorescent light measurements, which allows for the adjustment of integration times of the charge‐coupled device detector. The resulting increased fluorescence sensitivity positively affected the performance of principal component analysis for spectral data of Escherichia coli batch cultivation experiments with varying sorbitol concentration supplementation. In direct comparison with spectral data recorded at short integration times, more biologically consistent signal dynamics were calculated. Furthermore, during partial least square regression for E. coli cultivation experiments with varying glucose concentrations, improved modeling performance was observed. Especially, for the growth‐uncoupled acetate concentration, a considerable improvement of the root‐mean‐square error from 0.25 to 0.17 g/L was achieved. In conclusion, the modified setup represents another important step in advancing 2D fluorescence monitoring in microtiter plates.Publication Application of two-dimensional fluorescence spectroscopy for the on-line monitoring of teff-based substrate fermentation inoculated with certain probiotic bacteria(2022) Alemneh, Sendeku Takele; Emire, Shimelis Admassu; Jekle, Mario; Paquet-Durand, Olivier; von Wrochem, Almut; Hitzmann, BerndThere is increasing demand for cereal-based probiotic fermented beverages as an alternative to dairy-based products due to their limitations. However, analyzing and monitoring the fermentation process is usually time consuming, costly, and labor intensive. This research therefore aims to apply two-dimensional (2D)-fluorescence spectroscopy coupled with partial least-squares regression (PLSR) and artificial neural networks (ANN) for the on-line quantitative analysis of cell growth and concentrations of lactic acid and glucose during the fermentation of a teff-based substrate. This substrate was inoculated with mixed strains of Lactiplantibacillus plantarum A6 (LPA6) and Lacticaseibacillus rhamnosus GG (LCGG). The fermentation was performed under two different conditions: condition 1 (7 g/100 mL substrate inoculated with 6 log cfu/mL) and condition 2 (4 g/100 mL substrate inoculated with 6 log cfu/mL). For the prediction of LPA6 and LCGG cell growth, the relative root mean square error of prediction (pRMSEP) was measured between 2.5 and 4.5%. The highest pRMSEP (4.5%) was observed for the prediction of LPA6 cell growth under condition 2 using ANN, but the lowest pRMSEP (2.5%) was observed for the prediction of LCGG cell growth under condition 1 with ANN. A slightly more accurate prediction was found with ANN under condition 1. However, under condition 2, a superior prediction was observed with PLSR as compared to ANN. Moreover, for the prediction of lactic acid concentration, the observed values of pRMSEP were 7.6 and 7.7% using PLSR and ANN, respectively. The highest error rates of 13 and 14% were observed for the prediction of glucose concentration using PLSR and ANN, respectively. Most of the predicted values had a coefficient of determination (R2) of more than 0.85. In conclusion, a 2D-fluorescence spectroscopy combined with PLSR and ANN can be used to accurately monitor LPA6 and LCGG cell counts and lactic acid concentration in the fermentation process of a teff-based substrate. The prediction of glucose concentration, however, showed a rather high error rate.Publication Generic chemometric models for metabolite concentration prediction based on Raman spectra(2022) Yousefi-Darani, Abdolrahim; Paquet-Durand, Olivier; von Wrochem, Almut; Classen, Jens; Tränkle, Jens; Mertens, Mario; Snelders, Jeroen; Chotteau, Veronique; Mäkinen, Meeri; Handl, Alina; Kadisch, Marvin; Lang, Dietmar; Dumas, Patrick; Hitzmann, BerndChemometric models for on-line process monitoring have become well established in pharmaceutical bioprocesses. The main drawback is the required calibration effort and the inflexibility regarding system or process changes. So, a recalibration is necessary whenever the process or the setup changes even slightly. With a large and diverse Raman dataset, however, it was possible to generate generic partial least squares regression models to reliably predict the concentrations of important metabolic compounds, such as glucose-, lactate-, and glutamine-indifferent CHO cell cultivations. The data for calibration were collected from various cell cultures from different sites in different companies using different Raman spectrophotometers. In testing, the developed “generic” models were capable of predicting the concentrations of said compounds from a dilution series in FMX-8 mod medium, as well as from an independent CHO cell culture. These spectra were taken with a completely different setup and with different Raman spectrometers, demonstrating the model flexibility. The prediction errors for the tests were mostly in an acceptable range (<10% relative error). This demonstrates that, under the right circumstances and by choosing the calibration data carefully, it is possible to create generic and reliable chemometric models that are transferrable from one process to another without recalibration.Publication Improved methods in optimal design of experiments for determination of water absorption kinetics of cereal grains(2016) Paquet-Durand, Olivier; Hitzmann, BerndIn this thesis, the optimal design of experiments was applied to determine hydration kinetics of wheat grains. In the first study the used mathematical model was the Peleg model for which the optimal design of experiments was carried out while investigating how the optimization criterion will influence the result. The parameter estimation errors could be reduced by up to 62% compared to a non-optimal equidistant experimental design. It has been shown that the individual parameter estimation errors vary significantly depending on the used criterion. In this application only the D-optimal experimental design can reduce the parameter estimation errors of both parameters. In case of the A, Pr and E criterion at least one of the two parameter error could be reduced significantly. As the numerical optimization is computationally demanding, an alternative method for the entire optimal experimental design was developed. This alternative method is based on a mathematical function which depends on the rough initial parameter values. This function allows optimal measuring points to be calculated directly and therefore much faster, than the usual optimal design approach using numerical optimization techniques. In case of the very commonly used D-optimality criterion, the derived function is the exact solution. The deviation of the parameter estimation errors acquired by using the approximate optimal design instead of a normal optimal design are mostly around 0.01 % and therefore negligible. In the second study, the suitability of the Peleg model for water absorption kinetics of wheat grains was investigated closer. Cereal grains usually consist of three major components, bran layer, endosperm and germ. All these components have different water absorption kinetics. Therefore, the normal two parameter Peleg model might be insufficient to describe the water absorption process of cereal grains properly. To address this, the Peleg model was enhanced and a second Peleg like term was added to account for the two biggest fractions of the grain, namely the endosperm and the bran layer. Two experiments were carried out, an initial experiment to get rough parameter values and a second experiment, which was then optimally designed. The modified Peleg model had now four parameters and could be used to describe the hydration process of wheat grains much more accurate. Using the parameters calculated from the initial experiment the optimal measurement points where calculated in a way that the determination of the parameters of the modified Peleg model was as accurate as possible. The percentage parameter errors for the four parameters in the initial experiment were 669%, 24%, 12%, and 2.4%. By applying the optimal design, they were reduced to 38% 5.4%, 4.5% and 1.9% respectively. The modified Peleg model resulted in a very low root mean square error of prediction of 0.45% where the normal Peleg model results in a prediction error of about 3%. In the third study, it was investigated if bootstrapping could be used as a feasible alternative method for optimal experimental design. The classical procedure to determine parameter estimation errors is based on the Cramér-Rao lower bound but bootstrapping or re-sampling can also be used for the estimation of parameter variances. The newly developed method is more computationally demanding compared to the Cramér-Rao lower bound approach. However, bootstrapping is not bound to any restrictive assumptions about the measurement and parameter variations. An optimal experimental design based on the bootstrap method was calculated to determine optimal measurement times for the parameter estimation of the Peleg model. The Cramér-Rao based optimal design results were used as a benchmark. It was shown, that a bootstrap based optimal design of experiments yields similar optimal measurement points and therefore comparable results to the Cramér-Rao lower bound optimal design. The parameter estimation errors obtained from both optimal experimental design methods deviate on average by 1.5%. It has also been shown, that the probability densities of the parameters are asymmetric and not at all normal distributions. Due to this asymmetry, the estimated parameter errors acquired by bootstrapping are in fact likely to be more accurate. So bootstrapping can in fact be used in an optimal design context. However, this comes at the cost of a high computational effort. The computation time for a bootstrap based optimal design was around 25 minutes compared to only 5 seconds when using the Cramér-Rao lower bound method. But compared to the time required to carry out the experiments this is neglectable. Furthermore, as computers get faster and faster over time, the computational demand will become less relevant in future.Publication Online monitoring of sourdough fermentation using a gas sensor array with multivariate data analysis(2023) Anker, Marvin; Yousefi-Darani, Abdolrahim; Zettel, Viktoria; Paquet-Durand, Olivier; Hitzmann, Bernd; Krupitzer, ChristianSourdough can improve bakery products’ shelf life, sensory properties, and nutrient composition. To ensure high-quality sourdough, the fermentation has to be monitored. The characteristic process variables for sourdough fermentation are pH and the degree of acidity measured as total titratable acidity (TTA). The time- and cost-intensive offline measurement of process variables can be improved by utilizing online gas measurements in prediction models. Therefore, a gas sensor array (GSA) system was used to monitor the fermentation process of sourdough online by correlation of exhaust gas data with offline measurement values of the process variables. Three methods were tested to utilize the extracted features from GSA to create the models. The most robust prediction models were achieved using a PCA (Principal Component Analysis) on all features and combined two fermentations. The calibrations with the extracted features had a percentage root mean square error (RMSE) from 1.4% to 12% for the pH and from 2.7% to 9.3% for the TTA. The coefficient of determination (R2) for these calibrations was 0.94 to 0.998 for the pH and 0.947 to 0.994 for the TTA. The obtained results indicate that the online measurement of exhaust gas from sourdough fermentations with gas sensor arrays can be a cheap and efficient application to predict pH and TTA.Publication Online process state estimation for Hansenula polymorpha cultivation with 2D fluorescence spectra-based chemometric model calibrated from a theoretical model in place of offline measurements(2023) Babor, Majharulislam; Paquet-Durand, Olivier; Berg, Christoph; Büchs, Jochen; Hitzmann, BerndThe use of 2D fluorescence spectra is a powerful, instantaneous, and highly accurate method to estimate the state of bioprocesses. The conventional approach for calibrating a chemometric model from raw spectra needs a large number of offline measurements from numerous runs, which is tedious, time-consuming, and error-prone. In addition, many process variables lack direct signal responses, which forces chemometric models to make predictions based on indirect responses. In order to predict glycerol and biomass concentrations online in batch cultivation of Hansenula polymorpha, this study substituted offline measurements with simulated values. The only data from cultivations needed to generate the chemometric model were the 2D fluorescence spectra, with the presumption that they contain sufficient information to characterize the process state at a measurement point. The remainder of the evaluation was carried out with the aid of a mathematical process model that describes the theoretical interferences between process variables in the system. It is shown that the process model parameters, including microbial growth rate, the yield of biomass from glycerol, and lag time can be determined from only the spectra by employing a model-based calibration (MBC) approach. The prediction errors for glycerol and biomass concentrations were 8.6% and 5.7%, respectively. An improved model-based calibration (IMBC) approach is presented that calibrates a chemometric model for only biomass. Biomass was predicted from a 2D fluorescence spectrum in new cultivations, and glycerol concentration was estimated from the process model utilizing predicted biomass as an input. By using this method, the prediction errors for glycerol and biomass were reduced to 5.2% and 4.7%, respectively. The findings indicate that model-based calibration, which can be carried out with only 2D fluorescence spectra gathered from prior runs, is an effective method for estimating the process state online.