Browsing by Person "Schwarz, Steffen"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Publication Coffee leaf tea from El Salvador: on-site production considering influences of processing on chemical composition(2022) Steger, Marc C.; Rigling, Marina; Blumenthal, Patrik; Segatz, Valerie; Quintanilla-Belucci, Andrès; Beisel, Julia M.; Rieke-Zapp, Jörg; Schwarz, Steffen; Lachenmeier, Dirk W.; Zhang, YanyanThe production of coffee leaf tea (Coffea arabica) in El Salvador and the influences of processing steps on non-volatile compounds and volatile aroma-active compounds were investigated. The tea was produced according to the process steps of conventional tea (Camellia sinensis) with the available possibilities on the farm. Influencing factors were the leaf type (old, young, yellow, shoots), processing (blending, cutting, rolling, freezing, steaming), drying (sun drying, oven drying, roasting) and fermentation (wild, yeast, Lactobacillus). Subsequently, the samples were analysed for the maximum levels of caffeine, chlorogenic acid, and epigallocatechin gallate permitted by the European Commission. The caffeine content ranged between 0.37–1.33 g/100 g dry mass (DM), the chlorogenic acid was between not detectable and 9.35 g/100 g DM and epigallocatechin gallate could not be detected at all. Furthermore, water content, essential oil, ash content, total polyphenols, total catechins, organic acids, and trigonelline were determined. Gas chromatography—mass spectrometry—olfactometry and calculation of the odour activity values (OAVs) were carried out to determine the main aroma-active compounds, which are β-ionone (honey-like, OAV 132-927), decanal (citrus-like, floral, OAV 14-301), α-ionone (floral, OAV 30-100), (E,Z)-2,6-nonadienal (cucumber-like, OAV 18-256), 2,4-nonadienal (melon-like, OAV 2-18), octanal (fruity, OAV 7-23), (E)-2 nonenal (citrus-like, OAV 1-11), hexanal (grassy, OAV 1-10), and 4-heptenal (green, OAV 1-9). The data obtained in this study may help to adjust process parameters directly to consumer preferences and allow coffee farmers to earn an extra income from this by-product.Publication Production of coffee cherry spirits from Coffea arabica varieties(2022) Blumenthal, Patrik; Steger, Marc C.; Quintanilla Bellucci, Andrès; Segatz, Valerie; Rieke-Zapp, Jörg; Sommerfeld, Katharina; Schwarz, Steffen; Einfalt, Daniel; Lachenmeier, Dirk W.Coffee pulp, obtained from wet coffee processing, is the major by-product accumulating in the coffee producing countries. One of the many approaches valorising this underestimated agricultural residue is the production of distillates. This research project deals with the production of spirits from coffee pulp using three different Coffea arabica varieties as a substrate. Coffee pulp was fermented for 72 h with a selected yeast strain (Saccharomyces cerevisiae L.), acid, pectin lyase, and water. Several parameters, such as temperature, pH, sugar concentration and alcoholic strength were measured to monitor the fermentation process. Subsequently, the alcoholic mashes were double distilled with stainless steel pot stills and a sensory evaluation of the products was conducted. Furthermore, the chemical composition of fermented mashes and produced distillates were evaluated. It showed that elevated methanol concentrations (>1.3 g/L) were present in mashes and products of all three varieties. The sensory evaluation found the major aroma descriptor for the coffee pulp spirits as being stone fruit. The fermentation and distillation experiments revealed that coffee pulp can be successfully used as a raw material for the production of fruit spirits. However, the spirit quality and its flavour characteristics can be improved with optimised process parameters and distillation equipment.Publication Risk assessment of caffeine and epigallocatechin gallate in coffee leaf tea(2022) Tritsch, Nadine; Steger, Marc C.; Segatz, Valerie; Blumenthal, Patrik; Rigling, Marina; Schwarz, Steffen; Zhang, Yanyan; Franke, Heike; Lachenmeier, Dirk W.Coffee leaf tea is prepared as an infusion of dried leaves of Coffea spp. in hot water. It is a traditional beverage in some coffee-producing countries and has been authorized in 2020 within the European Union (EU) according to its novel food regulation. This article reviews current knowledge on the safety of coffee leaf tea. From the various ingredients contained in coffee leaves, only two were highlighted as possibly hazardous to human health, namely, caffeine and epigallocatechin gallate (EGCG), with maximum limits implemented in EU legislation, which is why this article focuses on these two substances. While the caffeine content is comparable to that of roasted coffee beans and subject to strong fluctuations in relation to the age of the leaves, climate, coffee species, and variety, a maximum of 1–3 cups per day may be recommended. The EGCG content is typically absent or below the intake of 800 mg/day classified as hepatotoxic by the European Food Safety Authority (EFSA), so this compound is suggested as toxicologically uncritical. Depending on selection and processing (age of the leaves, drying, fermentation, roasting, etc.), coffee leaf tea may exhibit a wide variety of flavors, and its full potential is currently almost unexplored. As a coffee by-product, it is certainly interesting to increase the income of coffee farmers. Our review has shown that coffee leaf tea is not assumed to exhibit risks for the consumer, apart from the well-known risk of caffeine inherent to all coffee-related beverages. This conclusion is corroborated by the history of its safe use in several countries around the world.Publication Sensorial and aroma profiles of coffee by-products - coffee leaves and coffee flowers(2023) Rigling, Marina; Steger, Marc C.; Lachenmeier, Dirk W.; Schwarz, Steffen; Zhang, YanyanThe utilization of coffee leaves and flowers has been underestimated over the years. Both by-products can be obtained from coffee trees without adversely affecting the production of coffee beans. To gain fundamental knowledge of their sensorial and aroma profiles, it becomes essential to reintroduce them into the food chain. Accordingly, 24 different coffee leaf samples generated from diverse processing as well as 38 varied species of coffee flowers were analyzed for their sensory characteristics by descriptive analysis and liking tests, and their corresponding aroma profiles were decoded by means of gas chromatography–mass spectrometry–olfactometry. For the coffee leaves, a wide range of different flavors could be detected in the sensory evaluation. The fermented coffee leaf samples clearly showed more sweetish and fruity aroma notes compared to the intense green and vegetable aroma of the non-fermented samples. β-Ionone (honey-like), decanal (citrus-like, floral), α-ionone (floral), octanal (fruity), and hexanal (green) were identified as key volatile compounds but distributed in different ratios. In the predominant coffee flowers, hay-like, hop-like, sage-like, dried apricot-like, and honey-like impressions were identified as major aroma descriptors in addition to a basic floral note. 2-Heptanol (fruity), 2-ethylhexanol (green), nerol (floral), and geraniol (floral) were identified as representative aroma compounds. All in all, a great variety of flavors was detected from the coffee leaves and flowers, which will not only provide an insight into the potential applications for the food market (i.e., coffee leaf tea and coffee flower tea) but will also help make coffee growing more sustainable.