Browsing by Person "Tscharntke, Teja"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Publication Trophic level and specialization moderate effects of habitat loss and landscape diversity on cavity‐nesting bees, wasps and their parasitoids(2024) Klaus, Felix; Tscharntke, Teja; Grass, Ingo1. Habitat loss is a primary driver of biodiversity decline, but differences in species responses to habitat loss from local to landscape scales are poorly understood. 2. Trophic level, food and habitat specialization have been suggested to be important predictors of species responses to habitat loss, landscape diversity and landscape scale. 3. Using cavity-nesting communities of bees, wasps and their parasitoids on calcareous grasslands as a model system allowed us to compare responses of species differing regarding their trophic level, and degree of specialization on habitat and food. 4. We found that species from higher trophic levels experienced semi-natural habitat at larger spatial scales than those of lower trophic levels, but only, when they were generalists (abundance of bees, 150 m radius, vs. wasps feeding on herbivores, 450 m radius), not specialists (bees, 150 m, vs. bee parasitoids, 150 m). 5. Parasitoids, which are typically more specialized regarding their food resources (hosts), compared to predators such as predatory wasps, responded to habitat loss at the same spatial scales as their hosts, suggesting strong bottom-up effects of resource availability, that is, host availability driving parasitoid abundance. 6. Bees were mostly habitat specialists of calcareous grasslands and mainly driven by local habitat loss, whereas wasps as habitat generalists were mostly affected by landscape diversity. 7. Our study highlights the need to consider the different spatial scales contingent on trophic level and specialization of target species groups, maintaining or restoring both local habitat and landscape diversity, as this is needed for their successful conservation.Publication Urbanization alters the spatiotemporal dynamics of plant–pollinator networks in a tropical megacity(2023) Marcacci, Gabriel; Westphal, Catrin; Rao, Vikas S.; Kumar S., Shabarish; Tharini, K. B.; Belavadi, Vasuki V.; Nölke, Nils; Tscharntke, Teja; Grass, IngoUrbanization is a major driver of biodiversity change but how it interacts with spatial and temporal gradients to influence the dynamics of plant–pollinator networks is poorly understood, especially in tropical urbanization hotspots. Here, we analysed the drivers of environmental, spatial and temporal turnover of plant–pollinator interactions (interaction β-diversity) along an urbanization gradient in Bengaluru, a South Indian megacity. The compositional turnover of plant–pollinator interactions differed more between seasons and with local urbanization intensity than with spatial distance, suggesting that seasonality and environmental filtering were more important than dispersal limitation for explaining plant–pollinator interaction β-diversity. Furthermore, urbanization amplified the seasonal dynamics of plant–pollinator interactions, with stronger temporal turnover in urban compared to rural sites, driven by greater turnover of native non-crop plant species (not managed by people). Our study demonstrates that environmental, spatial and temporal gradients interact to shape the dynamics of plant–pollinator networks and urbanization can strongly amplify these dynamics.