Browsing by Person "Wagner, Krystina"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Application of fluorescent proteins for functional dissection of the drosophila visual system(2021) Smylla, Thomas; Wagner, Krystina; Huber, ArminThe Drosophila eye has been used extensively to study numerous aspects of biological systems, for example, spatio-temporal regulation of differentiation, visual signal transduction, protein trafficking and neurodegeneration. Right from the advent of fluorescent proteins (FPs) near the end of the millennium, heterologously expressed fusion proteins comprising FPs have been applied in Drosophila vision research not only for subcellular localization of proteins but also for genetic screens and analysis of photoreceptor function. Here, we summarize applications for FPs used in the Drosophila eye as part of genetic screens, to study rhodopsin expression patterns, subcellular protein localization, membrane protein transport or as genetically encoded biosensors for Ca2+ and phospholipids in vivo. We also discuss recently developed FPs that are suitable for super-resolution or correlative light and electron microscopy (CLEM) approaches. Illustrating the possibilities provided by using FPs in Drosophila photoreceptors may aid research in other sensory or neuronal systems that have not yet been studied as well as the Drosophila eye.Publication Phospholipase D and retromer promote recycling of TRPL ion channel via the endoplasmic reticulum(2021) Wagner, Krystina; Smylla, Thomas K.; Lampe, Marko; Krieg, Jana; Huber, ArminPlasma membrane protein trafficking is of fundamental importance for cell function and cell integrity of neurons and includes regulated protein recycling. In this work, we report a novel role of the endoplasmic reticulum (ER) for protein recycling as discovered in trafficking studies of the ion channel TRPL in photoreceptor cells of Drosophila. TRPL is located within the rhabdomeric membrane from where it is endocytosed upon light stimulation and stored in the cell body. Conventional immunohistochemistry as well as stimulated emission depletion super‐resolution microscopy revealed TRPL storage at the ER after illumination, suggesting an unusual recycling route of TRPL. Our results also imply that both phospholipase D (PLD) and retromer complex are required for correct recycling of TRPL to the rhabdomeric membrane. Loss of PLD activity in PLD3.1 mutants results in enhanced degradation of TRPL. In the retromer mutant vps35MH20, TRPL is trapped in a Rab5‐positive compartment. Evidenced by epistatic analysis in the double mutant PLD3.1 vps35MH20, PLD activity precedes retromer function. We propose a model in which PLD and retromer function play key roles in the transport of TRPL to an ER enriched compartment.