Institut für Kulturpflanzenwissenschaften
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/12
Browse
Browsing Institut für Kulturpflanzenwissenschaften by Sustainable Development Goals "12"
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Publication Computing optimal allocation of trials to subregions in crop‐variety testing in case of correlated genotype effects(2025) Prus, Maryna; Prus, Maryna; Biostatistics Unit (340c), Institute of Crop Science, University of Hohenheim, Stuttgart, GermanyThe subject of this work is the allocation of trials to subregions in crop variety testing in the case of correlated genotype effects. A solution for computation of optimal allocations using the OptimalDesign package in R is proposed. The obtained optimal designs minimize linear criteria based on the mean squared error matrix of the best linear unbiased prediction of the genotype effects. The proposed computational approach allows for any kind of additional linear constraint on the designs. The results are illustrated by a real data example.Publication Do lower nitrogen fertilization levels require breeding of different types of cultivars in triticale?(2022) Neuweiler, Jan E.; Trini, Johannes; Maurer, Hans Peter; Würschum, TobiasBreeding high-yielding, nitrogen-efficient crops is of utmost importance to achieve greater agricultural sustainability. The aim of this study was to evaluate nitrogen use efficiency (NUE) of triticale, investigate long-term genetic trends and the genetic architecture, and develop strategies for NUE improvement by breeding. For this, we evaluated 450 different triticale genotypes under four nitrogen fertilization levels in multi-environment field trials for grain yield, protein content, starch content and derived indices. Analysis of temporal trends revealed that modern cultivars are better in exploiting the available nitrogen. Genome-wide association mapping revealed a complex genetic architecture with many small-effect QTL and a high level of pleiotropy for NUE-related traits, in line with phenotypic correlations. Furthermore, the effect of some QTL was dependent on the nitrogen fertilization level. High correlations of each trait between N levels and the rather low genotype-by-N-level interaction variance showed that generally the same genotypes perform well over different N levels. Nevertheless, the best performing genotype was always a different one. Thus, selection in early generations can be done under high nitrogen fertilizer conditions as these provide a stronger differentiation, but the final selection in later generations should be conducted with a nitrogen fertilization as in the target environment.Publication How many checks are needed per cycle in a plant breeding or variety testing programme?(2025) Piepho, Hans‐Peter; Laidig, Friedrich; Piepho, Hans‐Peter; Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany; Laidig, Friedrich; Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Stuttgart, GermanyCheck varieties are used in plant breeding and variety testing for a number of reasons. One important use of checks is to provide connectivity between years, which facilitates comparison among genotypes of interest that are tested in different years. When long‐term data are available, such comparisons allow an assessment of realized genetic gain (RGG). Here, we consider the question of how many check varieties are needed per cycle for a reliable assessment of RGG. We propose an approach that makes use of variance component estimates for relevant random effects in a linear mixed model and plugs them into an analysis of dummy datasets set up to represent the design options being considered. Our results show that it is useful to employ a larger number of checks and to keep the replacement rate low. Furthermore, there is intercycle information to be recovered, especially when there are few checks and replacement rates are high, so modelling the cycle main effect as random pays off.Publication Impacts of different light spectra on CBD, CBDA and terpene concentrations in relation to the flower positions of different cannabis Sativa L. strains(2022) Reichel, Philipp; Munz, Sebastian; Hartung, Jens; Kotiranta, Stiina; Graeff-Hönninger, SimoneCannabis is one of the oldest cultivated plants, but plant breeding and cultivation are restricted by country-specific regulations. The plant has gained interest due to its medically important secondary metabolites, cannabinoids and terpenes. Besides biotic and abiotic stress factors, secondary metabolism can be manipulated by changing light quality and intensity. In this study, three morphologically different cannabis strains were grown in a greenhouse experiment under three different light spectra with three real light repetitions. The chosen light sources were as follows: a CHD Agro 400 ceramic metal-halide lamp with a sun-like broad spectrum and an R:FR ratio of 2.8, and two LED lamps, a Solray (SOL) and an AP67, with R:FR ratios of 13.49 and 4, respectively. The results of the study indicated that the considered light spectra significantly influenced CBDA and terpene concentrations in the plants. In addition to the different light spectra, the distributions of secondary metabolites were influenced by flower positions. The distributions varied between strains and indicated interactions between morphology and the chosen light spectra. Thus, the results demonstrate that secondary metabolism can be artificially manipulated by the choice of light spectrum, illuminant and intensity. Furthermore, the data imply that, besides the cannabis strain selected, flower position can have an impact on the medicinal potencies and concentrations of secondary metabolites.Publication Limitations of soil-applied non-microbial and microbial biostimulants in enhancing soil P turnover and recycled P fertilizer utilization: A study with and without plants(2024) Herrmann, Michelle Natalie; Griffin, Lydia Grace; John, Rebecca; Mosquera-Rodríguez, Sergio F.; Nkebiwe, Peteh Mehdi; Chen, Xinping; Yang, Huaiyu; Müller, TorstenIntroduction: Phosphorus recovery from waste streams is a global concern due to open nutrient cycles. However, the reliability and efficiency of recycled P fertilizers are often low. Biostimulants (BS), as a potential enhancer of P availability in soil, could help to overcome current barriers using recycled P fertilizers. For this, a deeper understanding of the influence of BSs on soil P turnover and the interaction of BSs with plants is needed. Methods: We conducted an incubation and a pot trial with maize in which we testednon-microbial (humic acids and plant extracts) and microbial BSs (microbial consortia) in combination with two recycled fertilizers for their impact on soil P turnover, plant available P, and plant growth. Results and discussion: BSs could not stimulate P turnover processes (phosphatase activity, microbial biomass P) and had a minor impact on calcium acetate-lactate extractable P (CAL-P) in the incubation trial. Even though stimulation of microbial P turnover by the microbial consortium and humic acids in combination with the sewage sludge ash could be identified in the plant trial with maize, this was not reflected in the plant performance and soil P turnover processes. Concerning the recycled P fertilizers, the CAL-P content in soil was not a reliable predictor of plant performance with both products resulting in competitive plant growth and P uptake. While this study questions the reliability of BSs, it also highlights the necessity toimprove our understanding and distinguish the mechanisms of P mobilization in soil and the stimulation of plant P acquisition to optimize future usage.Publication Long-term breeding progress of yield, yield-related, and disease resistance traits in five cereal crops of German variety trials(2021) Laidig, Friedrich; Feike, T.; Klocke, B.; Macholdt, J.; Miedaner, Thomas; Rentel, D.; Piepho, Hans-PeterPlant breeding and improved crop management generated considerable progress in cereal performance over the last decades. Climate change, as well as the political and social demand for more environmentally friendly production, require ongoing breeding progress. This study quantified long-term trends for breeding progress and ageing effects of yield, yield-related traits, and disease resistance traits from German variety trials for five cereal crops with a broad spectrum of genotypes. The varieties were grown over a wide range of environmental conditions during 1988–2019 under two intensity levels, without (I1) and with (I2) fungicides and growth regulators. Breeding progress regarding yield increase was the highest in winter barley followed by winter rye hybrid and the lowest in winter rye population varieties. Yield gaps between I2 and I1 widened for barleys, while they shrank for the other crops. A notable decrease in stem stability became apparent in I1 in most crops, while for diseases generally a decrasing susceptibility was found, especially for mildew, brown rust, scald, and dwarf leaf rust. The reduction in disease susceptibility in I2 (treated) was considerably higher than in I1. Our results revealed that yield performance and disease resistance of varieties were subject to considerable ageing effects, reducing yield and increasing disease susceptibility. Nevertheless, we quantified notable achievements in breeding progress for most disease resistances. This study indicated an urgent and continues need for new improved varieties, not only to combat ageing effects and generate higher yield potential, but also to offset future reduction in plant protection intensity.Publication Microbial inoculants modulate the rhizosphere microbiome, alleviate plant stress responses, and enhance maize growth at field scale(2025) Francioli, Davide; Kampouris, Ioannis D.; Kuhl-Nagel, Theresa; Babin, Doreen; Sommermann, Loreen; Behr, Jan H.; Chowdhury, Soumitra Paul; Zrenner, Rita; Moradtalab, Narges; Schloter, Michael; Geistlinger, Joerg; Ludewig, Uwe; Neumann, Günter; Smalla, Kornelia; Grosch, Rita; Francioli, Davide; Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany; Kampouris, Ioannis D.; Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Braunschweig, Germany; Kuhl-Nagel, Theresa; Plant-Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany; Babin, Doreen; Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Braunschweig, Germany; Sommermann, Loreen; Department of Agriculture, Ecotrophology and Landscape Development, Anhalt University of Applied Sciences, Bernburg, Germany; Behr, Jan H.; Plant-Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany; Chowdhury, Soumitra Paul; Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany; Zrenner, Rita; Plant-Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany; Moradtalab, Narges; Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany; Schloter, Michael; Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany; Geistlinger, Joerg; Department of Agriculture, Ecotrophology and Landscape Development, Anhalt University of Applied Sciences, Bernburg, Germany; Ludewig, Uwe; Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany; Neumann, Günter; Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany; Smalla, Kornelia; Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Braunschweig, Germany; Grosch, Rita; Plant-Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, GermanyBackground: Field inoculation of crops with beneficial microbes is a promising sustainable strategy to enhance plant fitness and nutrient acquisition. However, effectiveness can vary due to environmental factors, microbial competition, and methodological challenges, while their precise modes of action remain uncertain. This underscores the need for further research to optimize inoculation strategies for consistent agricultural benefits. Results: Using a comprehensive, multidisciplinary approach, we investigate the effects of a consortium of beneficial microbes (BMc) ( Pseudomonas sp. RU47, Bacillus atrophaeus ABi03, Trichoderma harzianum OMG16) on maize ( Zea mays cv. Benedictio) through an inoculation experiment conducted within a long-term field trial across intensive and extensive farming practices. Additionally, an unexpected early drought stress emerged as a climatic variable, offering further insight into the effectiveness of the microbial consortium. Our findings demonstrate that BMc root inoculation primarily enhanced plant growth and fitness, particularly by increasing iron uptake, which is crucial for drought adaptation. Inoculated maize plants show improved shoot growth and fitness compared to non-inoculated plants, regardless of farming practices. Specifically, BMc modulate plant hormonal balance, enhance the detoxification of reactive oxygen species, and increase root exudation of iron-chelating metabolites. Amplicon sequencing reveals shifts in rhizosphere bacterial and fungal communities mediated by the consortium. Metagenomic shotgun sequencing indicates enrichment of genes related to antimicrobial lipopeptides and siderophores. Conclusions: Our findings highlight the multifaceted benefits of BMc inoculation on plant fitness, significantly influencing metabolism, stress responses, and the rhizosphere microbiome. These improvements are crucial for advancing sustainable agricultural practices by enhancing plant resilience and productivity.Publication NAC transcription factors ATAF1 and ANAC055 affect the heat stress response in Arabidopsis(2022) Alshareef, Nouf Owdah; Otterbach, Sophie L.; Allu, Annapurna Devi; Woo, Yong H.; de Werk, Tobias; Kamranfar, Iman; Mueller-Roeber, Bernd; Tester, Mark; Balazadeh, Salma; Schmöckel, Sandra M.; Alshareef, Nouf Owdah; Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Otterbach, Sophie L.; Department Physiology of Yield Stability, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany; Allu, Annapurna Devi; Department of Biology, Indian Institute of Science Education and Research (IISER), Tirupati, India; Woo, Yong H.; Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; de Werk, Tobias; Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; Kamranfar, Iman; Institute of Biochemistry and Biology, University of Potsdam, Potsdam‐Golm, Germany; Mueller-Roeber, Bernd; Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria; Tester, Mark; Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Balazadeh, Salma; Institute of Biology, Leiden University, Leiden, The Netherlands; Schmöckel, Sandra M.; Department Physiology of Yield Stability, Institute of Crop Science, University of Hohenheim, Stuttgart, GermanyPre-exposing (priming) plants to mild, non-lethal elevated temperature improves their tolerance to a later higher-temperature stress (triggering stimulus), which is of great ecological importance. ‘Thermomemory’ is maintaining this tolerance for an extended period of time. NAM/ATAF1/2/CUC2 (NAC) proteins are plant-specific transcription factors (TFs) that modulate responses to abiotic stresses, including heat stress (HS). Here, we investigated the potential role of NACs for thermomemory. We determined the expression of 104 Arabidopsis NAC genes after priming and triggering heat stimuli, and found ATAF1 expression is strongly induced right after priming and declines below control levels thereafter during thermorecovery. Knockout mutants of ATAF1 show better thermomemory than wild type, revealing a negative regulatory role. Differential expression analyses of RNA-seq data from ATAF1 overexpressor, ataf1 mutant and wild-type plants after heat priming revealed five genes that might be priming-associated direct targets of ATAF1: AT2G31260 (ATG9), AT2G41640 (GT61), AT3G44990 (XTH31), AT4G27720 and AT3G23540. Based on co-expression analyses applied to the aforementioned RNA-seq profiles, we identified ANAC055 to be transcriptionally co-regulated with ATAF1. Like ataf1, anac055 mutants show improved thermomemory, revealing a potential co-control of both NAC TFs over thermomemory. Our data reveals a core importance of two NAC transcription factors, ATAF1 and ANAC055, for thermomemory.