Institut für Kulturpflanzenwissenschaften
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/12
Browse
Browsing Institut für Kulturpflanzenwissenschaften by Sustainable Development Goals "15"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Improving cover crop mixtures to increase soil carbon inputs and weed suppression as a tool to promote yield potential(2024) Groß, Jonas; Müller, TorstenArable cropping systems are facing challenges imposed by climate change and are, at the same time, a tool to mitigate climate change. Soils are essential in securing yield potential and acting as a carbon sink. Recognizing small-scale site-specific differences in crop management and integrating cover crops, which provide ecosystem services such as carbon sequestration and weed suppression, are two approaches to climate-smart agriculture. To investigate site-specific soil heterogeneity, soil properties were analyzed in a field trial, measuring at three soil depths in 42 plots to determine their influence on yield measures. Soil organic carbon, silt, and clay contents in both topsoil and subsoil explained 45-46% of the variability in grain yield. Additionally, a positive correlation was found between increasing clay content in the topsoil and grain yield and tiller density. A higher clay content in the subsoil resulted in a decrease in grain yield. Soil organic carbon was identified as a soil property that positively influences yield and yield formation at any soil depth through multiple regressions and cluster analysis. Soil organic carbon is a critical soil measure that can significantly improve yield potential and can be manipulated by crop management practices like cover cropping. In a second field experiment, the impacts of increasing plant diversity of cover crop mixtures on rhizosphere carbon input and microbial utilization were investigated. A comparison was made between Mustard (Sinapis alba L.) planted as a sole crop and diversified cover crop mixtures of four (Mix4) or twelve (Mix12) species. A 13C-pulse labeling field experiment traced C transfer from shoots to roots to the soil microbial community. Mix 4 doubled the net CO2-C removal from the atmosphere, while Mix 12 more than tripled it, indicating that plant diversity positively impacts carbon cycling. This is reflected in higher atmospheric C uptake, higher transport rates to the rhizosphere, higher microbial incorporation, and longer residence time in the soil environment, improving the efficiency of C cycling in cropping systems. Root C-transfer could be identified as a fast pathway for C to reach soil C-compartments, but a substantial share of atmospheric C-catch comes from shoot biomass. In a third field experiment, the influence of species combination on shoot biomass formation was systematically assessed by investigating species interactions in dual cover crop mixtures and their competitiveness to suppress weeds before winter under different growing conditions. The shoot biomass share of a cover crop species in a dual-species mixture was found to be directly linked to its shoot biomass in a pure stand. Mustard and phacelia had similar effects on the shoot biomass production of the second species added to the mixture. Cruciferous species were more competitive against weeds than other cover crop species and could suppress weeds even when mixed with a less competitive partner. Weed suppression in mixtures with phacelia depended on the second component. Our results indicate that dual mixtures containing one competitive species reduce weed shoot biomass before winter, comparable to competitive pure stands. The research in this thesis shows that C content in the soil plays a crucial role in yield formation in arable cropping systems in Germany. Finally, the study has demonstrated that implementing cover crop mixtures can enhance soil C input and represent a valuable method for preserving yield potential. It was also shown that an intelligent combination of cover crop species can determine successful development and weed suppression.Publication Testing agronomic treatments to improve the establishment of novel miscanthus hybrids on marginal land(2025) Lewin, Eva; Clifton-Brown, John; Jensen, Elaine; Lewandowski, Iris; Krzyżak, Jacek; Pogrzeba, Marta; Hartung, Jens; Wolfmüller, Cedric; Kiesel, Andreas; Lewin, Eva; Department Biobased Resources in the Bioeconomy, University of Hohenheim, 70599 Stuttgart, Germany; Clifton-Brown, John; Department of Agronomy and Plant Breeding, Justus Libeig University Giessen, 35392 Giessen, Germany; Jensen, Elaine; Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3EE, UK; Lewandowski, Iris; Department Biobased Resources in the Bioeconomy, University of Hohenheim, 70599 Stuttgart, Germany; Krzyżak, Jacek; Institute for Ecology of Industrial Areas, 40-844 Katowice, Poland; Pogrzeba, Marta; Institute for Ecology of Industrial Areas, 40-844 Katowice, Poland; Hartung, Jens; Sustainable Agriculture and Energy Systems Department, University of Applied Science Weihenstephan-Triesdorf, 91746 Freising, Germany; Wolfmüller, Cedric; Department Biobased Resources in the Bioeconomy, University of Hohenheim, 70599 Stuttgart, Germany; Kiesel, Andreas; Department Biobased Resources in the Bioeconomy, University of Hohenheim, 70599 Stuttgart, Germany; Fujii, YoshiharuMiscanthus is considered a promising candidate for the cultivation of marginal land. This land poses unique challenges, and experiments have shown that the “establishment phase” is of paramount importance to the long-term yield performance of miscanthus. This experiment analyzes novel miscanthus hybrids and how their establishment on marginal land can be improved through agronomic interventions. Experiments took place at two sites in Germany: at Ihinger Hof, with a very shallow soil profile and high stone content, and at Reichwalde, where the soil was repurposed river sediment with low organic matter, high stone content, and a compacted lower horizon. These marginal conditions functioned as test cases for the improvement of miscanthus establishment agronomy. Four hybrids ( Miscanthus x giganteus , Gnt10, Gnt43, and Syn55) and agronomic treatments such as plastic mulch film, miscanthus mulch, inoculation with mycorrhizal fungi, and fertilization were tested in two years at both sites in 2021 and 2022. Specific weather conditions and the timing of planting were strong determinants of establishment success and no single treatment combination was found that consistently increased the establishment success. Plastic mulch films were found to hinder rather than help establishment in both these locations. Chipped miscanthus mulch caused nitrogen immobilization and stunted plant growth. At Ihinger Hof the novel seed-based miscanthus hybrid Gnt43 produced twice the biomass of other hybrids (7 t ha −1 ) in the first growing season. Gnt10 yielded well in 2021 and showed impressive tolerance to water stress in the summer of 2022. No treatment combination was found that consistently increased the establishment success of miscanthus hybrids across sites and years. Novel genotypes consistently outperformed the standard commercial miscanthus hybrid Miscanthus x giganteus . Gnt10 may be a promising candidate for the cultivation of water-stress-prone marginal lands, due to its isohydric behavior and high yield potential.