Institut für Landwirtschaftliche Betriebslehre
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/16
Browse
Browsing Institut für Landwirtschaftliche Betriebslehre by Sustainable Development Goals "12"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Publication Investigating the environmental Kuznets curve between economic growth and chemical fertilizer surpluses in China: a provincial panel cointegration approach(2022) Yu, Xiaomin; Schweikert, Karsten; Doluschitz, ReinerThis study investigated the relationship between fertilizer nitrogen (N) and phosphate (P) surpluses and economic development on the regional level in China. With a balanced panel dataset covering 30 provinces of mainland China from 1988 to 2019, we employed panel cointegrating polynomial regression (CPR) analysis using fully modified OLS (FM-OLS) estimators. Our results suggested that all provinces exhibit a long-run cointegrated relationship between fertilizer surpluses and real per capita gross regional product (GRP). A total of 22 provinces out of 30 showed a significant inverted U-shaped environmental Kuznets curve (EKC). Among those, 14 provinces are considered to have reached the peak and 8 provinces are considered to be before the peak. The group-mean turning points on the EKC are CNY 7022, CNY 9726, CNY 4697, CNY 3749, and CNY 5588 per capita GRP (1978 = 100) for the Northeast, Northcentral, Middle, and lower reaches of the Yangtze River, Southwest and Northwest China, respectively. The overall turning point of China is CNY 6705 per capita real gross domestic product (GDP), which was reached in circa 2012. This shows a general improvement of chemical fertilizer management in China. However, six provinces still exhibit linear growth in fertilizer surpluses when the economy grows. These regions are characterized by high cash-crop ratios and are mostly located along the southeast coast. Therefore, more effort and attention should be given to these regions to promote further fertilizer reduction. At the same time, nutrient use efficiencies should be improved, especially for cash crops such as fruit and vegetables.Publication The need for consumer-focused household food waste reduction policies using dietary patterns and socioeconomic status as predictors: a study on wheat bread waste in Shiraz, Iran(2022) Ghaziani, Shahin; Ghodsi, Delaram; Schweikert, Karsten; Dehbozorgi, Gholamreza; Rasekhi, Hamid; Faghih, Shiva; Doluschitz, ReinerCurrent household food waste (HFW) reduction plans usually focus on raising consumer awareness, which is essential but insufficient because HFW is predominantly attributed to unconscious behavioral factors that vary across consumer groups. Therefore, identifying such factors is crucial for predicting HFW levels and establishing effective plans. This study explored the role of dietary patterns (DP) and socioeconomic status (SES) as predictors of HBW using linear and non-linear regression models. Questionnaire interviews were performed in 419 households in Shiraz during 2019. A multilayer sampling procedure including stratification, clustering, and systematic sampling was used. Three main DPs, i.e., unhealthy, Mediterranean, and traditional, were identified using a food frequency questionnaire. Results indicated that a one-unit rise in the household’s unhealthy DP score was associated with an average increase in HBW of 0.40%. Similarly, a one-unit increase in the unhealthy DP score and the SES score increased the relative likelihood of bread waste occurrence by 25.6% and 14.5%, respectively. The comparison of findings revealed inconsistencies in HFW data, and therefore the necessity of studying HFW links to factors such as diet and SES. Further investigations that explore HFW associations with household characteristics and behavioral factors will help establish contextual and effective consumer-focused plans.Publication On the effects that motivate pesticide use in perspective of designing a cropping system without pesticides but with mineral fertilizer - a review(2023) Pergner, Isabell; Lippert, ChristianIn the future, a cropping system that guarantees food security by delivering high yields and, simultaneously, protects our environment is desperately needed. This can be achieved through a cropping system that waives chemical synthetic plant protection products, which endanger, for example, biodiversity and water resources. However, such a system, referred to here as the mineral-ecological cropping system (MECS), should still allow for the usage of mineral fertilizers to ensure high yields. It can be thought of as a compromise between the current conventional and organic cropping systems. This article presents a comprehensive literature review on the economic, social, and environmental effects of pesticides and the resulting reasons farmers have to use (or not use) them. Hereby, regarding future pesticide reduction, we identify hindrances and potential benefits that could be mobilized to design the MECS. The major points are the following: in a MECS, (1) it is expected that yields and temporal stability of yields will be higher than in organic farming, but lower than in conventional farming; (2) profitability might suffer due to high input costs and energy consumption; (3) it is expected that soil fertility and biodiversity protection will increase along with the promotion of alternative disease and pest control measures; (4) crop rotations will be wider and more diverse than in conventional farming; (5) mineral fertilizer cannot be optimally used by the crops unless a balanced supply of nitrogen is achieved. Farmers who want to switch to MECS should be compensated as they are likely to experience higher costs and lower yield and yield stability. The lessons learned from this review will help to progress toward an innovative and sustainable cropping system. Further research should focus on rational farmers’ adaptation possibilities when abandoning pesticides while still using mineral fertilizers.Publication Pathways for biodiversity enhancement in German agricultural landscapes(2025) Sponagel, Christian; Thompson, Amibeth; Paetow, Hubertus; Mupepele, Anne‐Christine; Bieling, Claudia; Sommer, Martin; Klein, Alexandra‐Maria; Settele, Josef; Finger, Robert; Huber, Robert; Albert, Christian; Filser, Juliane; Jansen, Florian; Kleemann, Janina; Schreiner, Vera; Lakner, SebastianConserving biodiversity, especially in agricultural landscapes, is a major societal challenge. Broad scientific evidence exists on the impacts of single drivers on biodiversity, such as the intensification of agriculture. However, halting biodiversity decline requires a systemic understanding of the interactions between multiple drivers, which has hardly been achieved so far. Selecting Germany as a case study, the goal of our analysis is (i) to understand how various socio‐economic drivers of biodiversity in agricultural landscapes interact at the national scale, (ii) to identify plausible pathways that most likely will lead to an improvement of biodiversity in agricultural landscapes and (iii) to discuss guiding principles for policy‐making based on the pathways. We applied the expert‐based Cross‐Impact‐Balance (CIB) methodology to the German agri‐food system (target year 2030). Seven descriptors that represent the most relevant socio‐economic drivers of biodiversity (here, we focus on species richness) in agricultural landscapes in Germany were defined. In three workshops with different groups of experts, we assessed all the interactions and impacts between these descriptors. From the workshops, seven overlapping scenarios were identified and aggregated into four main future pathways for enhancing biodiversity in agricultural landscapes. These pathways are: (1) ‘Innovation and stricter legislation’, (2) ‘Major change in protein production and CAP shift’, (3) ‘Major change in protein production and national legislation’ and (4) ‘Major social changes compensate for a lack of innovation in food production’. Socio‐economic drivers interact to varying degrees. Societal values have a strong active influence on the system, e. g. agricultural policy, whereas the orientation and objectives of agriculture, e. g. focus on public goods, are rather passively determined. Conserving biodiversity thus depends upon the evolution of societal values, European and national nature conservation and agricultural policies, innovations in plant and protein production as well as on global commodity markets. A key message for policymakers is that there are generally different, complementary options for achieving the objective of improving biodiversity. This is important when specific drivers such as the CAP cannot be steered in a particular desired direction.Publication Setting life cycle assessment (LCA) in a future-oriented context: the combination of qualitative scenarios and LCA in the agri-food sector(2022) Voglhuber-Slavinsky, Ariane; Zicari, Alberto; Smetana, Sergiy; Moller, Björn; Dönitz, Ewa; Vranken, Liesbet; Zdravkovic, Milena; Aganovic, Kemal; Bahrs, EnnoBy combining qualitative scenarios and life cycle assessment (LCA), we place the latter in a larger context. This study outlines the importance of the integration of future perspectives into LCA, and also the significance of taking changes in the environment of technology into account, rather than just technological development itself. Accordingly, we focused on adapting the background system of an attributional LCA in the agri-food sector. The proposed technology was assumed not have evolved in the considered time horizon. In this context, the objectives of this paper were twofold: (i) to methodologically prove the applicability of integrating qualitative scenarios into LCA and (ii) to focus on changes in the background system, which is sometimes overlooked in the context of future-oriented LCA. This allowed to evaluate the future potential of different technologies, assessing their environmental impact under uncertain future developments. Methodologically, the qualitative information from scenarios was transformed into quantitative data, which was successively fed into the life cycle inventory (LCI) of the LCA approach. This point of integration into the second phase of LCA translates into future changes in the entire environment in which a technology is used. This means that qualitatively described scenario narratives need to be converted into value estimates in order to be incorporated into the LCA model. A key conclusion is that changes in the background of an LCA—the changing framework expressed through the inventory database—can be very important for the environmental impact of emerging technologies. This approach was applied to a food processing technology to produce apple juice. The proposed methodology enables technology developers to make their products future-proof and robust against socioeconomic development. In addition, the market perspective, if spelled out in the scenarios, can be integrated, leading to a more holistic picture of LCA with its environmental focus, while simultaneously empowering actors to make the right strategic decisions today, especially when considering the long investment cycles in the agri-food sector.
