Fakultät Naturwissenschaften
Permanent URI for this communityhttps://hohpublica.uni-hohenheim.de/handle/123456789/1
Biologie, Ernährungs-wissenschaften und Lebensmittelwissenschaften sind die Schwerpunkte der Fakultät. Die Forschung befasst sich mit Schlüsselthemen der Life Sciences.
Homepage: https://natur.uni-hohenheim.de/
Browse
Browsing Fakultät Naturwissenschaften by Sustainable Development Goals "12"
Now showing 1 - 20 of 85
- Results Per Page
- Sort Options
Publication ACHEMA 2022: Innovationen und Trends in der Trocknungstechnik(2023) Ruprecht, Nora Alina; Frank, Jennifer; Raiber, Tobias V.; Teichmann, Heike; Gschwind, Peter; Kohlus, ReinhardIn diesem Beitrag werden die Highlights der auf der ACHEMA 2022 ausgestellten Neuerungen zusammengefasst und es wird über die beobachteten Trends berichtet. Neben neuen Anlagen in einzelnen Trocknungsbereichen wurden die Schritte der Firmen in den Bereichen der Schwerpunktthemen Digitalisierung und Nachhaltigkeit näher betrachtet.Publication Almond-like aroma formation of acid whey by Ischnoderma benzoinum fermentation: potential application in novel beverage development(2025) Hannemann, Lea; Klauss, Raphaela; Gleissle, Anne; Heinrich, Patrick; Braunbeck, Thomas; Zhang, YanyanTo address the sourish off-aroma of acid whey and enhance its upcycling, a new basidiomycete Ischnoderma benzoinum -mediated fermentation system was developed using pure acid whey as the sole substrate. A pleasant sweetish and marzipan-like odor was perceived after fermentation within 7 d at 24 °C in darkness, which was shaped from key contributors including 4-methoxybenzaldehyde (odor activity value (OAV) 878), 3-methylbutanal (OAV 511), 3,4-dimethoxybenzaldehyde (OAV 50), and benzaldehyde (OAV 28). The typical sweetish and almond-like odor persisted well after ultrahigh-temperature processing, though its intensity decreased slightly. Concurrently, the fermentation reduced lactose from 52 to 20 g/L but increased the contents of essential amino acids like threonine, leucine, and lysine. No significant cytotoxicity or genotoxicity differences were found between fermented and unfermented whey. Overall, the study highlights the capability of I. benzoinum fermentation to enhance the flavor of acid whey, offering a promising approach for creating nutritional and flavorful acid-whey-based products.Publication Analysis of acrylamide in vegetable chips after derivatization with 2-mercaptobenzoic acid by liquid chromatography–mass spectrometry(2022) Oellig, Claudia; Gottstein, Eva; Granvogl, MichaelSince many years, acrylamide (AA) is a well-known toxicologically relevant processing contaminant (“food-borne toxicant”). However, only during the recent years, high levels of acrylamide have been reported in vegetable chips. In the present study, AA was quantitated via a modified derivatization procedure with 2-mercaptobenzoic acid based on stable isotope dilution analysis and liquid chromatography–mass spectrometry. Extraction with a modified QuEChERS (quick, easy, cheap, efficient, rugged, safe) method, defatting with n -hexane, and a solid phase extraction clean-up with strong cation-exchange material were performed prior to the derivatization step. Limits of detection and quantitation (LoD and LoQ) were 12 and 41 µg of AA/kg of vegetable chips (estimated via signal-to-noise ratios of 3:1 and 10:1, respectively), and thus below the LoQ of 50 µg/kg requested by the European Food Safety Authority. Recovery rates between 92 and 101% at four spiking levels with a good precision expressed as a relative standard deviation < 7% were determined. With this method at hand, a survey of the current AA amounts in 38 vegetable chips from the worldwide market was performed, showing a remarkable variability between the different vegetables, but also between different products of the same vegetable. Thereby, the AA amounts ranged between 77.3 and 3090 µg/kg, with an average of 954 µg/kg which was distinctly higher in comparison to commercially available potato chips also analyzed in the present study (12 samples, range: 117–832 µg/kg, average: 449 µg/kg). While for sweet potato and parsnip relatively low AA amounts were found, beetroot and carrot showed rather high contents.Publication Analysis of mono-, di-, triacylglycerols, and fatty acids in food emulsifiers by high-performance liquid chromatography–mass spectrometry(2021) Schick, Dinah; Link, Katharina; Schwack, Wolfgang; Granvogl, Michael; Oellig, ClaudiaMono- and diacylglycerols (MG/DG) of fatty acids (FA), known as emulsifiers of the type E 471, are food additives used to adjust techno-functional properties of various foodstuffs. These emulsifiers, however, are not defined single compounds but comprise, in addition to MG and DG, other constituents such as FA, triacylglycerols (TG), and glycerol. Although the emulsifiers’ compositions affect techno-functional properties of the food, knowledge of the composition is scarcely available, and the emulsifiers and their dosage are generally chosen empirically. Thus, a simple and rather inexpensive method for the simultaneous determination of FA, 1-MG, 2-MG, 1,2-DG, 1,3-DG, and TG by high-performance liquid chromatography–mass spectrometry including a straightforward quantitation strategy has been developed. Reversed-phase chromatography with gradient elution offered adequate separation of 29 considered analytes within 21 peaks, while mass-selective detection provided their unequivocal identification. The quantitation strategy based on calibration just with the C16:0 representatives of each lipid class and a corresponding response factor system has proven to provide reliable results. The determined concentrations of different mixtures comprising varying compositions and concentrations of C16:0, C18:0, and C18:1 components of each lipid class deviated < 20% (n = 351) from the respective target concentrations. Limits of decision were determined to 0.3–0.8 mg/L and limits of quantitation to 0.8–1.7 mg/L, expressed as C16:0 representatives. Application of the method to various E 471 emulsifiers provided detailed data on their chemical compositions, and calculated FA compositions matched very well those determined by common methods such as gas chromatography with flame ionization detection.Publication Anoxic cell rupture of Prevotella bryantii by high-pressure homogenization protects the Na+-translocating NADH:quinone oxidoreductase from oxidative damage(2020) Schleicher, Lena; Fritz, Günter; Seifert, Jana; Steuber, JuliaRespiratory NADH oxidation in the rumen bacterium Prevotella bryantii is catalyzed by the Na+-translocating NADH:quinone oxidoreductase (NQR). A method for cell disruption and membrane isolation of P. bryantii under anoxic conditions using the EmulisFlex-C3 homogenizer is described. We compared NQR activity and protein yield after oxic and anoxic cell disruption by the EmulsiFlex, by ultrasonication, and by glass beads treatment. With an overall membrane protein yield of 50 mg L–1 culture and a NADH oxidation activity of 0.8 µmol min−1 mg−1, the EmulsiFlex was the most efficient method. Anoxic preparation yielded fourfold higher NQR activity compared to oxic preparation. P. bryantii lacks genes coding for superoxide dismutases and cell extracts do not exhibit superoxide dismutase activity. We propose that inactivation of NQR during oxic cell rupture is caused by superoxide, which accumulates in P. bryantii extracts exposed to air. Anoxic cell rupture is indispensable for the preparation of redox-active proteins and enzymes such as NQR from P. bryantii.Publication The antiviral activity of polyphenols(2025) Burkard, Markus; Piotrowsky, Alban; Leischner, Christian; Detert, Katja; Venturelli, Sascha; Marongiu, LuigiPolyphenols are secondary metabolites produced by a large variety of plants. These compounds that comprise the class of phenolic acids, stilbenes, lignans, coumarins, flavonoids, and tannins have a wide range of employment, from food production to medical usages. Among the beneficial applications of polyphenols, their antiviral activity is gaining importance due to the increased prevalence of drug‐resistant viruses such as herpes and hepatitis B viruses. In the present review, we provide an overview of the most promising or commonly used antiviral polyphenols and their mechanisms of action focusing on their effects on enveloped viruses of clinical importance (double‐stranded linear or partially double‐stranded circular DNA viruses, negative sense single‐stranded RNA viruses with nonsegmented or segmented genomes, and positive sense single‐stranded RNA viruses). The present work emphasizes the relevance of polyphenols, in particular epigallocatechin‐3‐gallate and resveratrol, as alternative or supportive antivirals. Polyphenols could interfere with virtually all steps of viral infection, from the adsorption to the release of viral particles. The activity of polyphenols against viruses is especially relevant given the risk of widespread outbreaks associated with viruses, remarked by the recent COVID‐19 pandemic.Publication Application of AprX from Pseudomonas paralactis for the improvement of the emulsifying properties of milk, plant and insect protein and estimation of their hydrolysate’s bitter potential(2025) Volk, Veronika; Ewert, Jacob; Longhi, Miriam; Stressler, Timo; Fischer, LutzProtein properties can be modified by selective enzymatic hydrolysis. In this study, the alkaline metalloendopeptidase AprX (Serralysin; EC 3.4.24.40) from Pseudomonas paralactis was used for the tailored hydrolysis of different food proteins resulting in the production of protein hydrolysates with improved emulsifying properties. Sodium caseinate, wheat gluten and buffalo worm protein were used for AprX hydrolysis at 40 °C and pH 8 to cover a spectrum of different protein sources. A maximum degree of hydrolysis (DH) of 13.1 ± 0.2%, 14.2 ± 0.1% and 20.7 ± 0.1% was reached for sodium caseinate, wheat gluten and the worm protein, respectively. The corresponding hydrolysate properties were analyzed regarding their particle size, peptide composition, solubility, viscosity, surface hydrophobicity and interfacial tension. The emulsifying properties were investigated by the oil-droplet size, ζ-potential and stability of emulsions prepared from the hydrolysates. Using partially hydrolyzed sodium caseinate (DH = 10.6%) as an emulsifier lead to an eightfold increase of the emulsion stability (t1/2 = 180 ± 0 min) compared to unhydrolyzed sodium caseinate. The emulsion stability using wheat gluten hydrolysates (DH = 11.9%) was increased 30-fold (t1/2 = 45 ± 5 min). Simultaneously, the solubility of gluten was increased by 60%. Buffalo worm hydrolysates (DH = 14.6%) had a twofold (t1/2 = 85 ± 5 min) increased emulsion stability. In conclusion, AprX can be used to improve the solubility and emulsifying properties of food proteins at a relatively high DH.Publication Assessing the capabilities of 2D fluorescence monitoring in microtiter plates with data-driven modeling for secondary substrate limitation experiments of Hansenula polymorpha(2023) Berg, Christoph; Herbst, Laura; Gremm, Lisa; Ihling, Nina; Paquet-Durand, Olivier; Hitzmann, Bernd; Büchs, JochenBackground: Non-invasive online fluorescence monitoring in high-throughput microbioreactors is a well-established method to accelerate early-stage bioprocess development. Recently, single-wavelength fluorescence monitoring in microtiter plates was extended to measurements of highly resolved 2D fluorescence spectra, by introducing charge-coupled device (CCD) detectors. Although introductory experiments demonstrated a high potential of the new monitoring technology, an assessment of the capabilities and limits for practical applications is yet to be provided. Results: In this study, three experimental sets introducing secondary substrate limitations of magnesium, potassium, and phosphate to cultivations of a GFP-expressing H. polymorpha strain were conducted. This increased the complexity of the spectral dynamics, which were determined by 2D fluorescence measurements. The metabolic responses upon growth limiting conditions were assessed by monitoring of the oxygen transfer rate and extensive offline sampling. Using only the spectral data, subsequently, partial least-square (PLS) regression models for the key parameters of glycerol, cell dry weight, and pH value were generated. For model calibration, spectral data of only two cultivation conditions were combined with sparse offline sampling data. Applying the models to spectral data of six cultures not used for calibration, resulted in an average relative root-mean-square error (RMSE) of prediction between 6.8 and 6.0%. Thus, while demanding only sparse offline data, the models allowed the estimation of biomass accumulation and glycerol consumption, even in the presence of more or less pronounced secondary substrate limitation. Conclusion: For the secondary substrate limitation experiments of this study, the generation of data-driven models allowed a considerable reduction in sampling efforts while also providing process information for unsampled cultures. Therefore, the practical experiments of this study strongly affirm the previously claimed advantages of 2D fluorescence spectroscopy in microtiter plates.Publication Bioaccessibility and anti-inflammatory activity in Caco-2 cells of phytochemicals from industrial by-products of coffee (Coffea arabica L.)(2025) Jiménez-Gutiérrez, Milena; Zielinski, Christian; Esquivel, Patricia; Frank, Jan; Irías-Mata, Andrea; Jiménez-Aspee, FelipeCoffee by-products are rich in nutrients and bioactive compounds in free soluble form and bound to cell wall components. These compounds undergo chemical changes during gastrointestinal digestion, affecting their bioaccessibility and bioactivity. This study is the first to investigate coffee by-products from industrial wet processing to evaluate the impact of simulated gastrointestinal digestion on their phytochemical composition and subsequent anti-inflammatory activity in Caco-2 cells. Digestion significantly reduced the stability and solubility of main compounds; however, digested bioaccessible by-products still exhibited anti-inflammatory properties, reducing IL-6, IL-8, and TNF-α levels. Correlation analysis identified rutin, quercetin-3-glycoside, caffeine and 5-caffeoylquinic acid as strongly linked to cytokine suppression, suggesting key roles and possible synergies. These results highlight the potential of coffee by-products as functional ingredients targeting intestinal inflammation. Future work should confirm in vivo efficacy, optimize extraction at scale, and address regulatory requirements to support industrial application and promote circular economy benefits.Publication Biotechnologische Herstellung des Biotensids Surfactin(2021) Lilge, LarsPublication Characterization of the major odor-active compounds in fresh rhizomes and leaves of Houttuynia cordata by comparative aroma extract dilution analysis(2025) Xu, Zhenli; Liu, Jing; Kreissl, Johanna; Oellig, Claudia; Vetter, Walter; Steinhaus, Martin; Frank, Stephanie; Rodov, VictorHouttuynia cordata is a culinary herb from Asia. Its edible rhizomes and leaves have a fishy aroma, the molecular background of which was unknown. A comparative aroma extract dilution analysis applied to fresh rhizomes and leaves resulted in 44 and 41 odorants, respectively, 38 of which were present with FD factors ≥1 in both samples. The odorant with the highest FD factors, whether in the rhizomes or leaves, was identified as metallic, soapy, fishy smelling 3-oxododecanal. Toward clarifying its tautomeric composition, quantum calculations suggested a predominance of the enol forms in the plant. However, the form perceived at the sniffing port during GC–O remained unclear.Publication Chlorinated paraffins in hinges of kitchen appliances(2021) Sprengel, Jannik; Vetter, WalterChlorinated paraffins (CPs) are anthropogenic pollutants of growing environmental concern. These highly complex mixtures of thousands of homologs and congeners are usually applied as additives in lubricants or as flame retardants and plasticizers in polymers and paints. Recent studies indicated the presence of high amounts of CPs in the kitchen environment whose sources could not be unequivocally identified. One option was the use of CPs as or in lubricants of hinges. To test this hypothesis, we performed wipe tests on lubricants on 29 hinges of different types of kitchen appliances (refrigerators, baking ovens, dishwashers, freezers, microwave oven, pasta machine, food processor, steam cooker) and analyzed them for short-chain CPs (SCCPs) and medium-chain CPs (MCCPs). CPs were detected in 21 samples (72%). Per wipe, SCCP concentrations ranged between 0.02 and 10 µg (median 0.23 µg), while MCCPs ranged from 0.09 to 750 µg (median 1.0 µg). Highest MCCP amounts (380 and 750 µg per wipe, respectively) were determined in new and unused appliances. A medium correlation between SCCP content and appliance age was observed, but no additional statistic correlation between SCCP/MCCP amount and appliance type or manufacturer could be observed. CPs released from hinges by volatilization, abrasion, and cleaning processes could enter the environment and come in contact with persons living in the corresponding households.Publication Comparative assessment of ethanol production from six typical German waste baked products(2024) Almuhammad, Mervat; Kölling, Ralf; Einfalt, DanielThis study investigates the potential for bioethanol production of six types of typical German leftover baked products: bread rolls, pretzel rolls, fine rye bread, white bread, pastry, and cream cakes. The experimental setup consisted of two experiments—one as a control and another with the addition of diammonium phosphate (DAP) to the mash. In terms of monosaccharide concentration at 30% dry matter (DM), white bread mash exhibited the highest level at 251.5 g/L, while cream cakes mash had the lowest at 186 g/L. The highest ethanol production occurred after 96 h of fermentation with rye bread, yielding 78.4 g/L. In contrast, despite having the highest monosaccharide levels, white bread produced only 21.5 g/L of ethanol after 96 h. The addition of DAP accelerated monosaccharide consumption in all baked products, with cream cakes completing the process in just 24 h. Bread rolls, pretzel rolls, pastry, and white bread fermentations finished within 72 h. Ethanol yields significantly increased in three DAP samples, with pretzel rolls yielding the highest ethanol concentration at 98.5 g/L, followed by white bread with 90.6 g/L, and bread rolls with 87.7 g/L. DAP had a substantial impact on all samples, reducing fermentation time and/or increasing ethanol yield. This effect was particularly pronounced with white bread, where it improved conversion efficiency from 17 to 72%, resulting in 90.6 g/L of ethanol. These results demonstrate that waste baked products hold substantial potential for bioethanol production, and this potential can be further enhanced through the addition of DAP.Publication Comparison of binding properties of a laccase-treated pea protein-sugar beet pectin mixture with methylcellulose in a bacon-type meat analogue(2022) Moll, Pascal; Salminen, Hanna; Stadtmueller, Lucie; Schmitt, Christophe; Weiss, JochenA bacon-type meat analogue consists of different structural layers, such as textured protein and a fat mimetic. To obtain a coherent and appealing product, a suitable binder must glue those elements together. A mixture based on pea protein and sugar beet pectin (r = 2:1, 25% w/w solids, pH 6) with and without laccase addition and a methylcellulose hydrogel (6% w/w) serving as benchmark were applied as binder between textured protein and a fat mimetic. A tensile strength test, during which the layers were torn apart, was performed to measure the binding ability. The pea protein–sugar beet pectin mixture without laccase was viscoelastic and had medium and low binding strength at 25 °C (F ≤ 3.5 N) and 70 °C (F ≈ 1.0 N), respectively. The addition of laccase solidified the mixture and increased binding strength at 25 °C (F ≥ 4.0 N) and 70 °C (F ≈ 2.0 N), due to covalent bonds within the binder and between the binder and the textured protein or the fat mimetic layers. Generally, the binding strength was higher when two textured protein layers were glued together. The binding properties of methylcellulose hydrogel was low (F ≤ 2.0 N), except when two fat mimetic layers were bound due to hydrophobic interactions becoming dominant. The investigated mixed pectin–pea protein system is able serve as a clean-label binder in bacon-type meat analogues, and the application in other products seems promising.Publication Complex European invasion history of Anoplophora glabripennis (Motschulsky): new insights in its population genomic differentiation using genotype-by-sequencing(2024) Haeussermann, Iris; Hasselmann, MartinAnthropogenic activities like trade facilitate increasing rates of biological invasions. Asian long-horned beetle (ALB), which is naturally distributed in eastern Asia (China, Korean peninsula), was introduced via wood packing materials (WPM) used in trade to North America (1996) and Europe (2001). We used 7810 single nucleotide polymorphisms (SNPs) derived by a genotype-by-sequencing (GBS) approach to decipher the introduction patterns into Europe. This is applied for the first time on European ALB outbreaks from Germany, Switzerland, and Italy, both from still active and already eradicated infestations. The genome-wide SNPs detected signs of small and highly structured populations within Europe, showing clear founder effects. The very high population differentiation is presumably derived from multiple independent introductions to Europe, which are spatially restricted in mating. By admixture and phylogenetic analyses, some cases of secondary dispersal were observed. Furthermore, some populations suggest admixture, which might have been originated by either multiple introductions from different sources into the new sites or recurrent introductions from an admixed source population. Our results confirmed a complex invasion history of the ALB into Europe and the usability of GBS obtained SNPs in invasion science even without source populations.Publication Construction and description of a constitutive plipastatin mono-producing Bacillus subtilis(2020) Vahidinasab, Maliheh; Lilge, Lars; Reinfurt, Aline; Pfannstiel, Jens; Henkel, Marius; Morabbi Heravi, Kambiz; Hausmann, RudolfBackground: Plipastatin is a potent Bacillus antimicrobial lipopeptide with the prospect to replace conventional antifungal chemicals for controlling plant pathogens. However, the application of this lipopeptide has so far been investigated in a few cases, principally because of the yield in low concentration and unknown regulation of biosynthesis pathways. B. subtilis synthesizes plipastatin by a non-ribosomal peptide synthetase encoded by the ppsABCDE operon. In this study, B. subtilis 3NA (a non-sporulation strain) was engineered to gain more insights about plipastatin mono-production. Results: The 4-phosphopantetheinyl transferase Sfp posttranslationally converts non-ribosomal peptide synthetases from inactive apoforms into their active holoforms. In case of 3NA strain, sfp gene is inactive. Accordingly, the first step was an integration of a repaired sfp version in 3NA to construct strain BMV9. Subsequently, plipastatin production was doubled after integration of a fully expressed degQ version from B. subtilis DSM10T strain (strain BMV10), ensuring stimulation of DegU-P regulatory pathway that positively controls the ppsABSDE operon. Moreover, markerless substitution of the comparably weak native plipastatin promoter (Ppps) against the strong constitutive promoter Pveg led to approximately fivefold enhancement of plipastatin production in BMV11 compared to BMV9. Intriguingly, combination of both repaired degQ expression and promoter exchange (Ppps::Pveg) did not increase the plipastatin yield. Afterwards, deletion of surfactin (srfAA-AD) operon by the retaining the regulatory comS which is located within srfAB and is involved in natural competence development, resulted in the loss of plipastatin production in BMV9 and significantly decreased the plipastatin production of BMV11. We also observed that supplementation of ornithine as a precursor for plipastatin formation caused higher production of plipastatin in mono-producer strains, albeit with a modified pattern of plipastatin composition. Conclusions: This study provides evidence that degQ stimulates the native plipastatin production. Moreover, a full plipastatin production requires surfactin synthetase or some of its components. Furthermore, as another conclusion of this study, results point towards ornithine provision being an indispensable constituent for a plipastatin mono-producer B. subtilis strain. Therefore, targeting the ornithine metabolic flux might be a promising strategy to further investigate and enhance plipastatin production by B. subtilis plipastatin mono-producer strains.Publication Consumption of antioxidant-rich “Cerrado” cashew pseudofruit affects hepatic gene expression in obese C57BL/6J high fat-fed mice(2022) Egea, Mariana Buranelo; Pierce, Gavin; Park, Si-Hong; Lee, Sang-In; Heger, Fabienne; Shay, NeilThe pseudofruit of A. othonianum Rizzini, “Cerrado” cashew pulp, has been described as rich in flavonoids, phenolic compounds, and vitamin C. The objective of this work was to evaluate the beneficial health effects seen with the addition of “Cerrado” cashew pulp (CP) to an obesogenic high fat diet provided to C57BL/6J male mice. In week 9, the HF-fed group had a significantly higher baseline glucose concentration than the LF- or HF+CP-fed groups. In RNAseq analysis, 4669 of 5520 genes were found to be differentially expressed. Among the genes most upregulated with the ingestion of the CP compared to HF were Ph1da1, SLc6a9, Clec4f, and Ica1 which are related to glucose homeostasis; Mt2 that may be involved steroid biosynthetic process; and Ciart which has a role in the regulation of circadian rhythm. Although “Cerrado” CP intake did not cause changes in the food intake or body weight of fed mice with HF diet, carbohydrate metabolism appeared to be improved based on the observed changes in gene expression.Publication Consumption of yeast-fermented wheat and rye breads increases colitis and mortality in a mouse model of colitis(2022) Zimmermann, Julia; De Fazio, Luigia; Kaden-Volynets, Valentina; Hitzmann, Bernd; Bischoff, Stephan C.Background: Cereals are known to trigger for wheat allergy, celiac disease and non-celiac wheat sensitivity (NCWS). Inflammatory processes and intestinal barrier impairment are suspected to be involved in NCWS, although the molecular triggers are unclear. Aims: We were interested if different bread types influence inflammatory processes and intestinal barrier function in a mouse model of inflammatory bowel disease. Methods: Epithelial caspase-8 gene knockout (Casp8 ΔIEC ) and control (Casp8 fl ) mice were randomized to eight groups, respectively. The groups received different diets for 28 days (gluten-free diet, gluten-rich diet 5 g%, or different types of bread at 50 g%). Breads varied regarding grain, milling and fermentation. All diets were isocaloric. Results: Regardless of the diet, Casp8 ΔIEC mice showed pronounced inflammation in colon compared to ileum, whereas Casp8 fl mice were hardly inflamed. Casp8 fl mice could tolerate all bread types. Especially yeast fermented rye and wheat bread from superfine flour but not pure gluten challenge increased colitis and mortality in Casp8 ΔIEC mice. Hepatic expression of lipopolysaccharide-binding protein and colonic expression of tumor necrosis factor-α genes were inversely related to survival. The bread diets, but not the gluten-rich diet, also decreased colonic tight junction expression to variable degrees, without clear association to survival and inflammation. Conclusions: Bread components, especially those from yeast-fermented breads from wheat and rye, increase colitis and mortality in Casp8 ΔIEC mice highly susceptible to intestinal inflammation, whereas control mice can tolerate all types of bread without inflammation. Yet unidentified bread components other than gluten seem to play the major role.Publication Crop cultivation in the Talayotic settlement of Son Fornés (Mallorca, Spain): agricultural practices on the western Mediterranean islands in the first millennium bce(2024) Stika, Hans-Peter; Neugebauer, Aleta; Rihuete-Herrada, Cristina; Risch, Roberto; Micó, Rafael; Voltas, Jordi; Amengual, Paula; Gelabert, Lara; Lull, VicenteThe Balearic Islands were colonised around the transition from the Chalcolithic to the Bronze Age, not earlier than 2300 cal bce and certainly much later than any central or eastern Mediterranean islands. The number of archaeobotanical records is low and consists mainly of cereals and a few pulses. We present here new results of our long-term study of Son Fornés, an archaeological site on Mallorca which was occupied since the beginning of the Iron Age Talayotic period (~ 850 cal bce ) and until Roman times (123 bce onwards), in the Balearic Islands. In the Talayotic period of Son Fornés Hordeum vulgare var. vulgare (hulled barley) and Triticum aestivum/durum/turgidum (free-threshing wheat) were the main cereals grown and Vicia faba (broad bean) was the main pulse, while Avena sp. (oats) is considered to have been a weed but was nonetheless consumed and was probably in an early phase of being domesticated. For the subsequent post-Talayotic (ca. 550 − 250 bce ), Classic I and Classic II, the Republican Roman occupation period (from 123 bce onwards) the databases are weak, displaying hulled barley as the main crop and broad bean as the main pulse. The archaeobotanical records of Ficus carica (fig), Olea europaea (olive) and Vitis vinifera (grapevine) represent wild or cultivated and domesticated forms. Prunus dulcis (almond) and Pinus pinea (stone pine) were found on Eivissa (Ibiza), pointing to a Phoenician introduction to the islands, while Phoenix dactylifera (date palm) and Castanea sativa (chestnut), found on Menorca, might have been brought in by the Romans. The number of crops being used on the Balearic Islands was limited when compared to sites of similar periods on the European mainland or the central and eastern Mediterranean islands. According to carbon isotope results of Δ 13 C, hulled barley grew under damper conditions than free-threshing wheat. The high δ 15 N values indicated that both crops were well-manured with animal dung during the entire occupation period.Publication Determination of mono- and diacylglycerols from E 471 food emulsifiers in aerosol whipping cream by high-performance thin-layer chromatography–fluorescence detection(2020) Oellig, Claudia; Blankart, Max; Hinrichs, Jörg; Schwack, Wolfgang; Granvogl, MichaelMono- and diacylglycerol (MAG and DAG) emulsifiers (E 471) are widely applied to regulate techno-functional properties in different food categories, for example, in dairy products. A method for the determination of MAG and DAG in aerosol whipping cream by high-performance thin-layer chromatography with fluorescence detection (HPTLC–FLD) after derivatization with primuline was developed. For sample preparation, aerosol whipping cream was mixed with ethanol, followed by the addition of water and liquid-liquid extraction with tert-butyl methyl ether. The sample extracts were analyzed by HPTLC–FLD on silica gel LiChrospher plates with n-pentane/n-hexane/diethyl ether (22.5:22.5:55, v/v/v) as mobile phase, when interfering matrix like cholesterol and triacylglycerols were successfully separated from the E 471 food additives. For quantitation, an emulsifier with known composition was used as calibration standard and the fluorescent MAG and DAG were scanned at 366/> 400 nm. Limits of detection and quantitation of 4 and 11 mg/100 g aerosol whipping cream were obtained for both monostearin and 1,2-distearin, respectively, and allowed the reliable quantitation of MAG and DAG from E 471 far below commonly applied emulsifier amounts. Recoveries from model aerosol whipping cream with 400 mg E 471/100 g were determined in a calibration range of 200–600 mg E 471/100 g sample and ranged between 86 and 105% with relative standard deviations below 7%. In aerosol whipping creams from the German market, E 471 amounts ranged between 384 and 610 mg/100 g.
