Fakultät Naturwissenschaften
Permanent URI for this communityhttps://hohpublica.uni-hohenheim.de/handle/123456789/1
Biologie, Ernährungs-wissenschaften und Lebensmittelwissenschaften sind die Schwerpunkte der Fakultät. Die Forschung befasst sich mit Schlüsselthemen der Life Sciences.
Homepage: https://natur.uni-hohenheim.de/
Browse
Browsing Fakultät Naturwissenschaften by Sustainable Development Goals "12"
Now showing 1 - 15 of 15
- Results Per Page
- Sort Options
Publication Consumption of antioxidant-rich “Cerrado” cashew pseudofruit affects hepatic gene expression in obese C57BL/6J high fat-fed mice(2022) Egea, Mariana Buranelo; Pierce, Gavin; Park, Si-Hong; Lee, Sang-In; Heger, Fabienne; Shay, NeilThe pseudofruit of A. othonianum Rizzini, “Cerrado” cashew pulp, has been described as rich in flavonoids, phenolic compounds, and vitamin C. The objective of this work was to evaluate the beneficial health effects seen with the addition of “Cerrado” cashew pulp (CP) to an obesogenic high fat diet provided to C57BL/6J male mice. In week 9, the HF-fed group had a significantly higher baseline glucose concentration than the LF- or HF+CP-fed groups. In RNAseq analysis, 4669 of 5520 genes were found to be differentially expressed. Among the genes most upregulated with the ingestion of the CP compared to HF were Ph1da1, SLc6a9, Clec4f, and Ica1 which are related to glucose homeostasis; Mt2 that may be involved steroid biosynthetic process; and Ciart which has a role in the regulation of circadian rhythm. Although “Cerrado” CP intake did not cause changes in the food intake or body weight of fed mice with HF diet, carbohydrate metabolism appeared to be improved based on the observed changes in gene expression.Publication Consumption of yeast-fermented wheat and rye breads increases colitis and mortality in a mouse model of colitis(2022) Zimmermann, Julia; De Fazio, Luigia; Kaden-Volynets, Valentina; Hitzmann, Bernd; Bischoff, Stephan C.; Zimmermann, Julia; Department of Nutritional Medicine/Prevention, University of Hohenheim, Stuttgart, Germany; De Fazio, Luigia; Department of Medical and Surgical Science (DIMEC), University of Bologna, Bologna, Italy; Kaden-Volynets, Valentina; Department of Nutritional Medicine/Prevention, University of Hohenheim, Stuttgart, Germany; Hitzmann, Bernd; Department of Process Analytics and Cereal Science, University of Hohenheim, Stuttgart, Germany; Bischoff, Stephan C.; Department of Nutritional Medicine/Prevention, University of Hohenheim, Stuttgart, GermanyBackground: Cereals are known to trigger for wheat allergy, celiac disease and non-celiac wheat sensitivity (NCWS). Inflammatory processes and intestinal barrier impairment are suspected to be involved in NCWS, although the molecular triggers are unclear. Aims: We were interested if different bread types influence inflammatory processes and intestinal barrier function in a mouse model of inflammatory bowel disease. Methods: Epithelial caspase-8 gene knockout (Casp8 ΔIEC ) and control (Casp8 fl ) mice were randomized to eight groups, respectively. The groups received different diets for 28 days (gluten-free diet, gluten-rich diet 5 g%, or different types of bread at 50 g%). Breads varied regarding grain, milling and fermentation. All diets were isocaloric. Results: Regardless of the diet, Casp8 ΔIEC mice showed pronounced inflammation in colon compared to ileum, whereas Casp8 fl mice were hardly inflamed. Casp8 fl mice could tolerate all bread types. Especially yeast fermented rye and wheat bread from superfine flour but not pure gluten challenge increased colitis and mortality in Casp8 ΔIEC mice. Hepatic expression of lipopolysaccharide-binding protein and colonic expression of tumor necrosis factor-α genes were inversely related to survival. The bread diets, but not the gluten-rich diet, also decreased colonic tight junction expression to variable degrees, without clear association to survival and inflammation. Conclusions: Bread components, especially those from yeast-fermented breads from wheat and rye, increase colitis and mortality in Casp8 ΔIEC mice highly susceptible to intestinal inflammation, whereas control mice can tolerate all types of bread without inflammation. Yet unidentified bread components other than gluten seem to play the major role.Publication Disc mower versus bar mower: Evaluation of the direct effects of two common mowing techniques on the grassland arthropod fauna(2025) von Berg, Lea; Frank, Jonas; Betz, Oliver; Steidle, Johannes L. M.; Böttinger, Stefan; Sann, Manuela; von Berg, Lea; Evolutionary Biology of Invertebrates, Institute for Evolution and Ecology, University of Tübingen, Tübingen, Germany; Frank, Jonas; Fundamentals of Agricultural Engineering, Institute for Agricultural Engineering, University of Hohenheim, Stuttgart, Germany; Betz, Oliver; Evolutionary Biology of Invertebrates, Institute for Evolution and Ecology, University of Tübingen, Tübingen, Germany; Steidle, Johannes L. M.; Chemical Ecology, Institute for Biology, University of Hohenheim, Stuttgart, Germany; Böttinger, Stefan; Fundamentals of Agricultural Engineering, Institute for Agricultural Engineering, University of Hohenheim, Stuttgart, Germany; Sann, Manuela; Chemical Ecology, Institute for Biology, University of Hohenheim, Stuttgart, Germany1. In Central Europe, species‐rich grasslands are threatened by intensive agriculture with frequent mowing, contributing to the reduction of arthropods such as insects and spiders. However, comprehensive and standardised studies on the direct effects of the two most agriculturally relevant mowing techniques, e.g., double‐blade bar mower versus disc mower, are lacking. 2. In a 2‐year experiment, we have investigated the direct effect of mowing on eight abundant arthropod groups in grassland, covering two seasonal mowing events in both years, using a randomised block design. We compared (a) an unmown control, (b) a double‐blade bar mower and (c) a disc mower. 3. For most of the taxonomic groups studied, a significantly lower number of individuals was found in the experimental plots immediately after mowing, regardless of the mowing technique, compared to an unmown control. This was not the case for Orthoptera and Coleoptera, which did not show a significant reduction in the number of individuals for both mowing techniques (Orthoptera) or only for the double‐blade bar mower (Coleoptera). 4. Between both mowing techniques, no significant differences were found for all taxonomic groups investigated. 5. Synthesis and applications: Our findings suggest that mowing in general has a negative impact on abundant arthropod groups in grassland, regardless of the method used. Tractor‐driven double‐blade bar mowers do not seem to be a truly insect‐friendly alternative to a conventional disc mower. Other factors such as cutting height and mowing regimes should be seriously considered to protect spiders and insects from the negative effects of mowing. In addition, we strongly recommend the maintenance of unmown refugia. Insects and spiders that are spared by mowing can take refuge in these unmown areas to avoid subsequent harvesting and thermally unfavourable conditions that arise on mown areas. Further, unmown refugia are basic habitat structures for a subsequent recolonisation of mown areas once the flora has recovered.Publication Editorial: Microbial biosurfactants: updates on their biosynthesis, production and applications(2024) Hausmann, Rudolf; Déziel, Eric; Soberón-Chávez, GloriaPublication Fed-batch bioreactor cultivation of Bacillus subtilis using vegetable juice as an alternative carbon source for lipopeptides production: a shift towards a circular bioeconomy(2024) Gugel, Irene; Vahidinasab, Maliheh; Benatto Perino, Elvio Henrique; Hiller, Eric; Marchetti, Filippo; Costa, Stefania; Pfannstiel, Jens; Konnerth, Philipp; Vertuani, Silvia; Manfredini, Stefano; Hausmann, Rudolf; Gugel, Irene; Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy, (S.V.);; Vahidinasab, Maliheh; Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (E.H.B.P.);; Benatto Perino, Elvio Henrique; Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (E.H.B.P.);; Hiller, Eric; Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (E.H.B.P.);; Marchetti, Filippo; Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy, (S.V.);; Costa, Stefania; Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy, (S.V.);; Pfannstiel, Jens; Core Facility Hohenheim, Mass Spectrometry Unit, University of Hohenheim, Ottlie-Zeller-Weg 2, 70599 Stuttgart, Germany; Konnerth, Philipp; Department of Conversion Technology of Biobased Resources, University of Hohenheim, Garbenstrasse 9, 70599 Stuttgart, Germany;; Vertuani, Silvia; Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy, (S.V.);; Manfredini, Stefano; Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy, (S.V.);; Hausmann, Rudolf; Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (E.H.B.P.);; Gudiña, EduardoIn a scenario of increasing alarm about food waste due to rapid urbanization, population growth and lifestyle changes, this study aims to explore the valorization of waste from the retail sector as potential substrates for the biotechnological production of biosurfactants. With a perspective of increasingly contributing to the realization of the circular bioeconomy, a vegetable juice, derived from unsold fruits and vegetables, as a carbon source was used to produce lipopeptides such as surfactin and fengycin. The results from the shake flask cultivations revealed that different concentrations of vegetable juice could effectively serve as carbon sources and that the fed-batch bioreactor cultivation strategy allowed the yields of lipopeptides to be significantly increased. In particular, the product/substrate yield of 0.09 g/g for surfactin and 0.85 mg/g for fengycin was obtained with maximum concentrations of 2.77 g/L and 27.53 mg/L after 16 h, respectively. To conclude, this study provides the successful fed-batch cultivation of B. subtilis using waste product as the carbon source to produce secondary metabolites. Therefore, the consumption of agricultural product wastes might be a promising source for producing valuable metabolites which have promising application potential to be used in several fields of biological controls of fungal diseases.Publication Food informatics - Review of the current state-of-the-art, revised definition, and classification into the research landscape(2021) Krupitzer, Christian; Stein, AnthonyBackground: The increasing population of humans, changing food consumption behavior, as well as the recent developments in the awareness for food sustainability, lead to new challenges for the production of food. Advances in the Internet of Things (IoT) and Artificial Intelligence (AI) technology, including Machine Learning and data analytics, might help to account for these challenges. Scope and Approach: Several research perspectives, among them Precision Agriculture, Industrial IoT, Internet of Food, or Smart Health, already provide new opportunities through digitalization. In this paper, we review the current state-of-the-art of the mentioned concepts. An additional concept is Food Informatics, which so far is mostly recognized as a mainly data-driven approach to support the production of food. In this review paper, we propose and discuss a new perspective for the concept of Food Informatics as a supportive discipline that subsumes the incorporation of information technology, mainly IoT and AI, in order to support the variety of aspects tangent to the food production process and delineate it from other, existing research streams in the domain. Key Findings and Conclusions: Many different concepts related to the digitalization in food science overlap. Further, Food Informatics is vaguely defined. In this paper, we provide a clear definition of Food Informatics and delineate it from related concepts. We corroborate our new perspective on Food Informatics by presenting several case studies about how it can support the food production as well as the intermediate steps until its consumption, and further describe its integration with related concepts.Publication An innovative approach in the baking of bread with CO2 gas hydrates as leavening agents(2022) Srivastava, Shubhangi; Kollemparembil, Ann Mary; Zettel, Viktoria; Claßen, Timo; Mobarak, Mohammad; Gatternig, Bernhard; Delgado, Antonio; Jekle, Mario; Hitzmann, BerndGas (guest) molecules are trapped in hydrogen-bonded water molecules to form gas hydrates (GH), non-stoichiometric solids that resemble ice. High pressure and low temperature are typical conditions for their development, with van der Waals forces joining the host and guest molecules. This article study investigates the application of CO2 gas hydrates (CO2 GH) as a leavening agent in baking, with particular reference to the production of wheat bread. The main intention of this study is to better understand the complex bread dough formed by CO2 GH and its impact on product quality. This may enable the adaptation of CO2 GH in baking applications, such as those that can specifically influence wheat bread properties, and so the final bread quality. The present research further examines the comparative evaluation of yeast bread with the GH bread’s impact on bread quality parameters. The amount of GH was varied from 10 to 60%/amount of flour for the GH breads. The GH breads were compared with the standard yeast bread for different quality parameters such as volume, texture, and pore analysis. The results show that the bread with 20% and 40% GH obtained the best results in terms of volume and pore size. Moreover, this article also sheds some light on the future applications of the use of CO2 GH as leavening agents in foods. This knowledge could help to create new procedures and criteria for improved GH selection for applications in bread making and other bakery or food products.Publication Limitations of soil-applied non-microbial and microbial biostimulants in enhancing soil P turnover and recycled P fertilizer utilization - a study with and without plants(2024) Herrmann, Michelle Natalie; Griffin, Lydia Grace; John, Rebecca; Mosquera-Rodríguez, Sergio F.; Nkebiwe, Peteh Mehdi; Chen, Xinping; Yang, Huaiyu; Müller, Torsten; Herrmann, Michelle Natalie; Institute of Crop Science, Department of Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany; Griffin, Lydia Grace; Institute of Crop Science, Department of Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany; John, Rebecca; Institute of Crop Science, Department of Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany; Mosquera-Rodríguez, Sergio F.; Institute of Crop Science, Department of Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany; Nkebiwe, Peteh Mehdi; Institute of Crop Science, Department of Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany; Chen, Xinping; College of Resources and Environment, Academy of Agricultural Sciences, Southwest University, Chongqing, China; Yang, Huaiyu; College of Resources and Environment, Academy of Agricultural Sciences, Southwest University, Chongqing, China; Müller, Torsten; Institute of Crop Science, Department of Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, GermanyIntroduction: Phosphorus recovery from waste streams is a global concern due to open nutrient cycles. However, the reliability and efficiency of recycled P fertilizers are often low. Biostimulants (BS), as a potential enhancer of P availability in soil, could help to overcome current barriers using recycled P fertilizers. For this, a deeper understanding of the influence of BSs on soil P turnover and the interaction of BSs with plants is needed. Methods: We conducted an incubation and a pot trial with maize in which we testednon-microbial (humic acids and plant extracts) and microbial BSs (microbial consortia) in combination with two recycled fertilizers for their impact on soil P turnover, plant available P, and plant growth. Results and discussion: BSs could not stimulate P turnover processes (phosphatase activity, microbial biomass P) and had a minor impact on calcium acetate-lactate extractable P (CAL-P) in the incubation trial. Even though stimulation of microbial P turnover by the microbial consortium and humic acids in combination with the sewage sludge ash could be identified in the plant trial with maize, this was not reflected in the plant performance and soil P turnover processes. Concerning the recycled P fertilizers, the CAL-P content in soil was not a reliable predictor of plant performance with both products resulting in competitive plant growth and P uptake. While this study questions the reliability of BSs, it also highlights the necessity toimprove our understanding and distinguish the mechanisms of P mobilization in soil and the stimulation of plant P acquisition to optimize future usage.Publication The low mutational flexibility of the EPSP synthase in Bacillus subtilis is due to a higher demand for shikimate pathway intermediates(2023) Schwedt, Inge; Schöne, Kerstin; Eckert, Maike; Pizzinato, Manon; Winkler, Laura; Knotkova, Barbora; Richts, Björn; Hau, Jann-Louis; Steuber, Julia; Mireles, Raul; Noda‐Garcia, Lianet; Fritz, Günter; Mittelstädt, Carolin; Hertel, Robert; Commichau, Fabian M.Glyphosate (GS) inhibits the 5-enolpyruvyl-shikimate-3-phosphate (EPSP) synthase that is required for aromatic amino acid, folate and quinone biosynthesis in Bacillus subtilis and Escherichia coli. The inhibition of the EPSP synthase by GS depletes the cell of these metabolites, resulting in cell death. Here, we show that like the laboratory B. subtilis strains also environmental and undomesticated isolates adapt to GS by reducing herbicide uptake. Although B. subtilis possesses a GS-insensitive EPSP synthase, the enzyme is strongly inhibited by GS in the native environment. Moreover, the B. subtilis EPSP synthase mutant was only viable in rich medium containing menaquinone, indicating that the bacteria require a catalytically efficient EPSP synthase under nutrient-poor conditions. The dependency of B. subtilis on the EPSP synthase probably limits its evolvability. In contrast, E. coli rapidly acquires GS resistance by target modification. However, the evolution of a GS-resistant EPSP synthase under non-selective growth conditions indicates that GS resistance causes fitness costs. Therefore, in both model organisms, the proper function of the EPSP synthase is critical for the cellular viability. This study also revealed that the uptake systems for folate precursors, phenylalanine and tyrosine need to be identified and characterized in B. subtilis.Publication Monodopsis subterranea is a source of α‐tocomonoenol, and its concentration, in contrast to α‐tocopherol, is not affected by nitrogen depletion(2024) Montoya‐Arroyo, Alexander; Muñoz‐González, Alejandra; Lehnert, Katja; Frick, Konstantin; Schmid‐Staiger, Ulrike; Vetter, Walter; Frank, Janα-Tomonoenols (αT1) are tocochromanols structurally related to tocopherols (T) and tocotrienols (T3), the bioactive members of the vitamin E family. However, limited evidence exists regarding the sources and biosynthesis of tocomonoenols. Nitrogen depletion increases the content of α-tocopherol (αT), the main vitamin E congener, in microalgae, but little is known regarding its effect on other tocochromanols, such as tocomonoenols and tocotrienols. We therefore quantified the concentrations of T, T1, and T3, in freeze-dried biomass from nitrogen-sufficient, and nitrogen-depleted Monodopsis subterranea (Eustigmatophyceae). The identities of isomers of αT1 were confirmed by LC–MS and GC–MS. αT was the predominant tocochromanol (82% of total tocochromanols). αT1 was present in higher quantities than the sum of all T3 (6% vs. 1% of total tocochromanols). 11′-αT1 was the main αT1 isomer. Nitrogen depletion increased αT, but not αT1 or T3 in M. subterranea. In conclusion, nitrogen depletion increased the content of αT, the biologically most active form of vitamin E, in M. subterranea without affecting αT1 and T3 and could potentially be used as a strategy to enhance its nutritional value but not to increase αT1 content, indicating that αT1 accumulation is independent of that of αT in microalgae.Publication The non-nutritive sweetener rebaudioside a enhances phage infectivity(2025) Marongiu, Luigi; Brzozowska, Ewa; Brykała, Jan; Burkard, Markus; Schmidt, Herbert; Szermer-Olearnik, Bożena; Venturelli, Sascha; Marongiu, Luigi; Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany; Brzozowska, Ewa; Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigl St, 53114, Wroclaw, Poland; Brykała, Jan; Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigl St, 53114, Wroclaw, Poland; Burkard, Markus; Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany; Schmidt, Herbert; Department of Food Microbiology, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstraße 28, 70599, Stuttgart, Germany; Szermer-Olearnik, Bożena; Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigl St, 53114, Wroclaw, Poland; Venturelli, Sascha; Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, GermanyNon-nutritive sweeteners (NNS) are widely employed in foodstuffs. However, it has become increasingly evident that their consumption is associated with bacterial dysbiosis, which, in turn, is linked to several health conditions, including a higher risk of type 2 diabetes and cancer. Among the NNS, stevia, whose main component is rebaudioside A (rebA), is gaining popularity in the organic food market segment. While the effect of NNS on bacteria has been established, the impact of these sweeteners on bacterial viruses (phages) has been neglected, even though phages are crucial elements in maintaining microbial eubiosis. The present study sought to provide a proof-of-concept of the impact of NNS on phage infectivity by assessing the binding of rebA to phage proteins involved in the infection process of enteropathogenic bacteria, namely the fiber protein gp17 of Yersinia enterocolitica phage φYeO3-12 and the tubular baseplate protein gp31 of Klebsiella pneumoniae phage 32. We employed docking analysis and a panel of in vitro confirmatory tests (microscale thermophoresis, RedStarch ™ depolymerization, adsorption, and lysis rates). Docking analysis indicated that NNS can bind to both fiber and baseplate proteins. Confirmatory assays demonstrated that rebA can bind gp31 and that such binding increased the protein’s enzymatic activity. Moreover, the binding of rebA to gp17 resulted in a decrease in the adsorption rate of the recombinant protein to its host but increased the Yersinia bacteriolysis caused by the whole phage compared to unexposed controls. These results support the hypothesis that NNS can impair phage infectivity, albeit the resulting effect on the microbiome remains to be elucidated.Publication Oral processing of anisotropic food structures: A modelling approach to dynamic mastication data(2024) Oppen, Dominic; Weiss, JochenMaterials that have been generated through a directionally oriented growth process often exhibit anisotropic properties. Plant materials such as tubers and roots or animal matter used to produce products such as steaks or pasta filata are characterized by an alignment of molecules, aggregates or cells in certain dimensions leading to differing properties depending on direction. Such an anisotropic property behavior is important for a wide range of quality attributes such as texture, appearance, stability and even aroma and taste. Especially the former is of critical importance to consumer liking and acceptance of foods. Structure-texture relationships have already been established for certain foods. For anisotropic foods though, a determination of such relationships is difficult, since the comminution of foods during chewing causes complex changes to the underlying anisotropic structure elements that are not easily measurable using conventional mechanical texture analysis tests such as cutting, shearing or compression. On the other hand, sensory tests using panels are very time consuming and often do not reveal structural causes for texture like or dislike by consumers. The lack of availability of suitable analytical techniques that allow for a description of texture properties relevant to mastication hampers especially the development of meat substitutes that are currently trending. The aim of this work was therefore to characterize changes to anisotropic structures induced by chewing (henceforth referred to as "oral processing") using a novel measurement approach that records kinematic and electromyographic properties of the chewing process. The kinematics of jaw movement were recorded using a 3D motion tracking system. Muscle activity was recorded using an electromyograph. From the measured data, characteristics for individual chews were calculated, which were represented in a linear mixed model as a function of the food structure. Section I provides the scientific basis for this work through a preface and a literature review. Grown and manufactured anisotropic foods are identified and described. A general overview of the production, phase phenomena and characterization methods for anisotropic food materials is given. Section II contains the oral processing experiments. In Chapter III, the focus was put on the impact of fiber length of grown structures on mastication behavior. Meat model systems with different microstructures but the same composition were produced. The model systems with anisotropic and isotropic microstructures were comminuted to different sizes, and the fiber length was inferred from the length of the particles, taking into account the particle size effect of chewing. The results indicate that longer fibers cause greater jaw movement and muscle activity. For instance, estimate peak muscle activity of anisotropic samples is 58.2857 µV higher (p=0.0156) compared to isotropic samples. Chapter IV describes minced meat products in which certain phase volumes were replaced by a finely comminuted meat mass. The aim of the study was to find detection limits beyond which an increase or decrease in muscle fiber cells does not lead to a further adjustment of the mastication properties. In the study, a transition point was identified at around 50 % of batter-like substances. Food models with more than 50 % of batter-like substance showed a smaller change in mastication parameters. The effect was more pronounced with higher proportions of fibrous material. Chapter V dealt with the topic of meat substitutes. A simple model of meat substitutes was used to test whether the effects found in anisotropic animal-based products can also be found in plant-based products. Hydrocolloid gels with different phase volumes of wet textured plant protein were produced. Similar effects for the animal-based products were observed, although the correlation was not as strong. It was hypothesized that a large part of the effect was due to the weak binding ability of hydrocolloid gels. Thus, the anisotropic particles could not be held together with a low proportion of the outer hydrocolloid gel and required less muscle activity despite a higher content of structured phase. Section III assessed alternative data evaluation strategies to the linear mixed model. The aim of the study in Chapter VI was to anticipate the model products from Chapter III using a classification approach. Algorithms of three categories were trained with the data set of the chewing processes. Two approaches were used to evaluate whether the algorithms could either resolve each individual food model with variations in microstructure (anisotropy) and macrostructure (particle size) or in microstructure only. For both approaches, the algorithms performed significantly better compared to a random guessing. The best classification results were achieved by the boosted ensemble learner "XGBoost", which assigned 96.617 % of all bites to the corresponding food microstructure. Furthermore, it was demonstrated that standardized and normalized oral processing data are almost not subject-dependent. In addition, feature importance analysis confirmed that lateral jaw movement is a good indicator of the presence of anisotropic food material and, with a weight of 0.39205, is the most important feature for classifying samples according to their structure. In summary, this work was able to show that the dynamic characteristics of mastication change depending on anisotropic properties. In general, modeling of mastication characteristics has never been conducted before and represents a promising advance over mean-based evaluation. The machine learning approach is also new in the field of oral processing and proved to be promising. For future research, it is proposed to correlate the dynamic features with sensory texture data to obtain direct correlations between chewing characteristics and texture attributes.Publication Outcomes addressed in randomized controlled lifestyle intervention trials in community‐dwelling older people with (sarcopenic) obesity - an evidence map(2022) Galicia Ernst, Isabel; Torbahn, Gabriel; Schwingshackl, Lukas; Knüttel, Helge; Kob, Robert; Kemmler, Wolfgang; Sieber, Cornel C.; Batsis, John A.; Villareal, Dennis T.; Ströbele-Benschop, Nanette; Visser, Marjolein; Volkert, Dorothee; Kiesswetter, Eva; Schoene, DanielObesity and sarcopenic obesity (SO) are characterized by excess body fat with or without low muscle mass affecting bio‐psycho‐social health, functioning, and subsequently quality of life in older adults. We mapped outcomes addressed in randomized controlled trials (RCTs) on lifestyle interventions in community‐dwelling older people with (sarcopenic) obesity. Systematic searches in Medline, Embase, Cochrane Central, CINAHL, PsycInfo, Web of Science were conducted. Two reviewers independently performed screening and extracted data on outcomes, outcome domains, assessment methods, units, and measurement time. A bubble chart and heat maps were generated to visually display results. Fifty‐four RCTs (7 in SO) reporting 464 outcomes in the outcome domains: physical function (n = 42), body composition/anthropometry (n = 120), biomarkers (n = 190), physiological (n = 30), psychological (n = 47), quality of life (n = 14), pain (n = 4), sleep (n = 2), medications (n = 3), and risk of adverse health events (n = 5) were included. Heterogeneity in terms of outcome definition, assessment methods, measurement units, and measurement times was found. Psychological and quality of life domains were investigated in a minority of studies. There is almost no information beyond 52 weeks. This evidence map is the first step of a harmonization process to improve comparability of RCTs in older people with (sarcopenic) obesity and facilitate the derivation of evidence‐based clinical decisions.Publication Resveratrol attenuates mast cell mediated allergic reactions: Potential for use as a nutraceutical in allergic diseases?(2022) Civelek, Mehtap; Bilotta, Sabrina; Lorentz, AxelAllergic diseases are one of the most common health disorders affecting about 30% of the world population. Mast cells (MCs) are key effector cells of allergic reactions by releasing proinflammatory mediators including histamine, lipid mediators, and cytokines/chemokines. Natural substances like secondary plant substances such as resveratrol (RESV), which can contribute to prevention and treatment of diseases, are becoming increasingly interesting for use as nutraceuticals. In this review, the anti‐inflammatory effects of RESV on MC‐mediated allergic reactions in vitro and in vivo models are summarized. The studies indicate that RESV inhibits MC degranulation, synthesis of arachidonic acid metabolites, expression of cytokines and chemokines as well as activation of signal molecules involved in proinflammatory mechanisms. Also, beneficial impacts by this polyphenol are reported in randomized controlled trials with allergic rhinitis patients. Although it cannot yet be concluded that RESV can be used successfully in allergy patients in general, there are many results that indicate a possible role for RESV for use as an anti‐inflammatory nutraceutical. However, strategies to favorably influence the poor bioavailability of RESV would be helpful.Publication Structure elucidation and characterization of novel glycolipid biosurfactant produced by Rouxiella badensis DSM 100043T(2025) Harahap, Andre Fahriz Perdana; Conrad, Jürgen; Wolf, Mario; Pfannstiel, Jens; Klaiber, Iris; Grether, Jakob; Hiller, Eric; Vahidinasab, Maliheh; Salminen, Hanna; Treinen, Chantal; Perino, Elvio Henrique Benatto; Hausmann, Rudolf; Harahap, Andre Fahriz Perdana; Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany; (A.F.P.H.); (J.G.); (E.H.); (M.V.); (E.H.B.P.); Conrad, Jürgen; Department of Organic Chemistry (130b), Institute of Chemistry, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany; (J.C.); (M.W.); Wolf, Mario; Department of Organic Chemistry (130b), Institute of Chemistry, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany; (J.C.); (M.W.); Pfannstiel, Jens; Mass Spectrometry Unit, Core Facility Hohenheim, University of Hohenheim, Ottilie-Zeller-Weg 2, 70599 Stuttgart, Germany; (J.P.); (I.K.); Klaiber, Iris; Mass Spectrometry Unit, Core Facility Hohenheim, University of Hohenheim, Ottilie-Zeller-Weg 2, 70599 Stuttgart, Germany; (J.P.); (I.K.); Grether, Jakob; Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany; (A.F.P.H.); (J.G.); (E.H.); (M.V.); (E.H.B.P.); Hiller, Eric; Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany; (A.F.P.H.); (J.G.); (E.H.); (M.V.); (E.H.B.P.); Vahidinasab, Maliheh; Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany; (A.F.P.H.); (J.G.); (E.H.); (M.V.); (E.H.B.P.); Salminen, Hanna; Department of Food Material Science (150g), Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 21/25, 70599 Stuttgart, Germany;; Treinen, Chantal; Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany;; Perino, Elvio Henrique Benatto; Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany; (A.F.P.H.); (J.G.); (E.H.); (M.V.); (E.H.B.P.); Hausmann, Rudolf; Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany; (A.F.P.H.); (J.G.); (E.H.); (M.V.); (E.H.B.P.); Serianni, Anthony S.Microbial biosurfactants have become increasingly attractive as promising ingredients for environmentally friendly products. The reasons for this are their generally good performance and biodegradability, low toxicity, production from renewable raw materials, and benefits for the environment perceived by consumers. In this study, we investigated the chemical structure and properties of a novel glycolipid from a new biosurfactant-producing strain, Rouxiella badensis DSM 100043 T . Bioreactor cultivation was performed at 30 °C and pH 7.0 for 28 h using 15 g/L glycerol as a carbon source. The glycolipid was successfully purified from the ethyl acetate extract of the supernatant using medium pressure liquid chromatography (MPLC). The structure of the glycolipid was determined by one- and two-dimensional ( 1 H and 13 C) nuclear magnetic resonance (NMR) and confirmed by liquid chromatography electrospray ionization mass spectrometry (LC-ESI/MS). NMR analysis revealed the hydrophilic moiety as a glucose molecule and the hydrophobic moieties as 3-hydroxy-5-dodecenoic acid and 3-hydroxydecanoic acid, which are linked with the glucose by ester bonds at the C2 and C3 positions. Surface tension measurement with tensiometry indicated that the glucose–lipid could reduce the surface tension of water from 72.05 mN/m to 24.59 mN/m at 25 °C with a very low critical micelle concentration (CMC) of 5.69 mg/L. Moreover, the glucose–lipid demonstrated very good stability in maintaining emulsification activity at pH 2–8, a temperature of up to 100 °C, and a NaCl concentration of up to 15%. These results show that R. badensis DSM 100043 T produced a novel glycolipid biosurfactant with excellent surface-active properties, making it promising for further research or industrial applications.