Fakultät Naturwissenschaften
Permanent URI for this communityhttps://hohpublica.uni-hohenheim.de/handle/123456789/1
Biologie, Ernährungs-wissenschaften und Lebensmittelwissenschaften sind die Schwerpunkte der Fakultät. Die Forschung befasst sich mit Schlüsselthemen der Life Sciences.
Homepage: https://natur.uni-hohenheim.de/
Browse
Browsing Fakultät Naturwissenschaften by Sustainable Development Goals "2"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Publication Consumption of yeast-fermented wheat and rye breads increases colitis and mortality in a mouse model of colitis(2022) Zimmermann, Julia; De Fazio, Luigia; Kaden-Volynets, Valentina; Hitzmann, Bernd; Bischoff, Stephan C.; Zimmermann, Julia; Department of Nutritional Medicine/Prevention, University of Hohenheim, Stuttgart, Germany; De Fazio, Luigia; Department of Medical and Surgical Science (DIMEC), University of Bologna, Bologna, Italy; Kaden-Volynets, Valentina; Department of Nutritional Medicine/Prevention, University of Hohenheim, Stuttgart, Germany; Hitzmann, Bernd; Department of Process Analytics and Cereal Science, University of Hohenheim, Stuttgart, Germany; Bischoff, Stephan C.; Department of Nutritional Medicine/Prevention, University of Hohenheim, Stuttgart, GermanyBackground: Cereals are known to trigger for wheat allergy, celiac disease and non-celiac wheat sensitivity (NCWS). Inflammatory processes and intestinal barrier impairment are suspected to be involved in NCWS, although the molecular triggers are unclear. Aims: We were interested if different bread types influence inflammatory processes and intestinal barrier function in a mouse model of inflammatory bowel disease. Methods: Epithelial caspase-8 gene knockout (Casp8 ΔIEC ) and control (Casp8 fl ) mice were randomized to eight groups, respectively. The groups received different diets for 28 days (gluten-free diet, gluten-rich diet 5 g%, or different types of bread at 50 g%). Breads varied regarding grain, milling and fermentation. All diets were isocaloric. Results: Regardless of the diet, Casp8 ΔIEC mice showed pronounced inflammation in colon compared to ileum, whereas Casp8 fl mice were hardly inflamed. Casp8 fl mice could tolerate all bread types. Especially yeast fermented rye and wheat bread from superfine flour but not pure gluten challenge increased colitis and mortality in Casp8 ΔIEC mice. Hepatic expression of lipopolysaccharide-binding protein and colonic expression of tumor necrosis factor-α genes were inversely related to survival. The bread diets, but not the gluten-rich diet, also decreased colonic tight junction expression to variable degrees, without clear association to survival and inflammation. Conclusions: Bread components, especially those from yeast-fermented breads from wheat and rye, increase colitis and mortality in Casp8 ΔIEC mice highly susceptible to intestinal inflammation, whereas control mice can tolerate all types of bread without inflammation. Yet unidentified bread components other than gluten seem to play the major role.Publication Disc mower versus bar mower: Evaluation of the direct effects of two common mowing techniques on the grassland arthropod fauna(2025) von Berg, Lea; Frank, Jonas; Betz, Oliver; Steidle, Johannes L. M.; Böttinger, Stefan; Sann, Manuela; von Berg, Lea; Evolutionary Biology of Invertebrates, Institute for Evolution and Ecology, University of Tübingen, Tübingen, Germany; Frank, Jonas; Fundamentals of Agricultural Engineering, Institute for Agricultural Engineering, University of Hohenheim, Stuttgart, Germany; Betz, Oliver; Evolutionary Biology of Invertebrates, Institute for Evolution and Ecology, University of Tübingen, Tübingen, Germany; Steidle, Johannes L. M.; Chemical Ecology, Institute for Biology, University of Hohenheim, Stuttgart, Germany; Böttinger, Stefan; Fundamentals of Agricultural Engineering, Institute for Agricultural Engineering, University of Hohenheim, Stuttgart, Germany; Sann, Manuela; Chemical Ecology, Institute for Biology, University of Hohenheim, Stuttgart, Germany1. In Central Europe, species‐rich grasslands are threatened by intensive agriculture with frequent mowing, contributing to the reduction of arthropods such as insects and spiders. However, comprehensive and standardised studies on the direct effects of the two most agriculturally relevant mowing techniques, e.g., double‐blade bar mower versus disc mower, are lacking. 2. In a 2‐year experiment, we have investigated the direct effect of mowing on eight abundant arthropod groups in grassland, covering two seasonal mowing events in both years, using a randomised block design. We compared (a) an unmown control, (b) a double‐blade bar mower and (c) a disc mower. 3. For most of the taxonomic groups studied, a significantly lower number of individuals was found in the experimental plots immediately after mowing, regardless of the mowing technique, compared to an unmown control. This was not the case for Orthoptera and Coleoptera, which did not show a significant reduction in the number of individuals for both mowing techniques (Orthoptera) or only for the double‐blade bar mower (Coleoptera). 4. Between both mowing techniques, no significant differences were found for all taxonomic groups investigated. 5. Synthesis and applications: Our findings suggest that mowing in general has a negative impact on abundant arthropod groups in grassland, regardless of the method used. Tractor‐driven double‐blade bar mowers do not seem to be a truly insect‐friendly alternative to a conventional disc mower. Other factors such as cutting height and mowing regimes should be seriously considered to protect spiders and insects from the negative effects of mowing. In addition, we strongly recommend the maintenance of unmown refugia. Insects and spiders that are spared by mowing can take refuge in these unmown areas to avoid subsequent harvesting and thermally unfavourable conditions that arise on mown areas. Further, unmown refugia are basic habitat structures for a subsequent recolonisation of mown areas once the flora has recovered.Publication Food informatics - Review of the current state-of-the-art, revised definition, and classification into the research landscape(2021) Krupitzer, Christian; Stein, AnthonyBackground: The increasing population of humans, changing food consumption behavior, as well as the recent developments in the awareness for food sustainability, lead to new challenges for the production of food. Advances in the Internet of Things (IoT) and Artificial Intelligence (AI) technology, including Machine Learning and data analytics, might help to account for these challenges. Scope and Approach: Several research perspectives, among them Precision Agriculture, Industrial IoT, Internet of Food, or Smart Health, already provide new opportunities through digitalization. In this paper, we review the current state-of-the-art of the mentioned concepts. An additional concept is Food Informatics, which so far is mostly recognized as a mainly data-driven approach to support the production of food. In this review paper, we propose and discuss a new perspective for the concept of Food Informatics as a supportive discipline that subsumes the incorporation of information technology, mainly IoT and AI, in order to support the variety of aspects tangent to the food production process and delineate it from other, existing research streams in the domain. Key Findings and Conclusions: Many different concepts related to the digitalization in food science overlap. Further, Food Informatics is vaguely defined. In this paper, we provide a clear definition of Food Informatics and delineate it from related concepts. We corroborate our new perspective on Food Informatics by presenting several case studies about how it can support the food production as well as the intermediate steps until its consumption, and further describe its integration with related concepts.Publication Limitations of soil-applied non-microbial and microbial biostimulants in enhancing soil P turnover and recycled P fertilizer utilization - a study with and without plants(2024) Herrmann, Michelle Natalie; Griffin, Lydia Grace; John, Rebecca; Mosquera-Rodríguez, Sergio F.; Nkebiwe, Peteh Mehdi; Chen, Xinping; Yang, Huaiyu; Müller, Torsten; Herrmann, Michelle Natalie; Institute of Crop Science, Department of Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany; Griffin, Lydia Grace; Institute of Crop Science, Department of Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany; John, Rebecca; Institute of Crop Science, Department of Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany; Mosquera-Rodríguez, Sergio F.; Institute of Crop Science, Department of Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany; Nkebiwe, Peteh Mehdi; Institute of Crop Science, Department of Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, Germany; Chen, Xinping; College of Resources and Environment, Academy of Agricultural Sciences, Southwest University, Chongqing, China; Yang, Huaiyu; College of Resources and Environment, Academy of Agricultural Sciences, Southwest University, Chongqing, China; Müller, Torsten; Institute of Crop Science, Department of Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart, GermanyIntroduction: Phosphorus recovery from waste streams is a global concern due to open nutrient cycles. However, the reliability and efficiency of recycled P fertilizers are often low. Biostimulants (BS), as a potential enhancer of P availability in soil, could help to overcome current barriers using recycled P fertilizers. For this, a deeper understanding of the influence of BSs on soil P turnover and the interaction of BSs with plants is needed. Methods: We conducted an incubation and a pot trial with maize in which we testednon-microbial (humic acids and plant extracts) and microbial BSs (microbial consortia) in combination with two recycled fertilizers for their impact on soil P turnover, plant available P, and plant growth. Results and discussion: BSs could not stimulate P turnover processes (phosphatase activity, microbial biomass P) and had a minor impact on calcium acetate-lactate extractable P (CAL-P) in the incubation trial. Even though stimulation of microbial P turnover by the microbial consortium and humic acids in combination with the sewage sludge ash could be identified in the plant trial with maize, this was not reflected in the plant performance and soil P turnover processes. Concerning the recycled P fertilizers, the CAL-P content in soil was not a reliable predictor of plant performance with both products resulting in competitive plant growth and P uptake. While this study questions the reliability of BSs, it also highlights the necessity toimprove our understanding and distinguish the mechanisms of P mobilization in soil and the stimulation of plant P acquisition to optimize future usage.Publication The low mutational flexibility of the EPSP synthase in Bacillus subtilis is due to a higher demand for shikimate pathway intermediates(2023) Schwedt, Inge; Schöne, Kerstin; Eckert, Maike; Pizzinato, Manon; Winkler, Laura; Knotkova, Barbora; Richts, Björn; Hau, Jann-Louis; Steuber, Julia; Mireles, Raul; Noda‐Garcia, Lianet; Fritz, Günter; Mittelstädt, Carolin; Hertel, Robert; Commichau, Fabian M.Glyphosate (GS) inhibits the 5-enolpyruvyl-shikimate-3-phosphate (EPSP) synthase that is required for aromatic amino acid, folate and quinone biosynthesis in Bacillus subtilis and Escherichia coli. The inhibition of the EPSP synthase by GS depletes the cell of these metabolites, resulting in cell death. Here, we show that like the laboratory B. subtilis strains also environmental and undomesticated isolates adapt to GS by reducing herbicide uptake. Although B. subtilis possesses a GS-insensitive EPSP synthase, the enzyme is strongly inhibited by GS in the native environment. Moreover, the B. subtilis EPSP synthase mutant was only viable in rich medium containing menaquinone, indicating that the bacteria require a catalytically efficient EPSP synthase under nutrient-poor conditions. The dependency of B. subtilis on the EPSP synthase probably limits its evolvability. In contrast, E. coli rapidly acquires GS resistance by target modification. However, the evolution of a GS-resistant EPSP synthase under non-selective growth conditions indicates that GS resistance causes fitness costs. Therefore, in both model organisms, the proper function of the EPSP synthase is critical for the cellular viability. This study also revealed that the uptake systems for folate precursors, phenylalanine and tyrosine need to be identified and characterized in B. subtilis.Publication Monodopsis subterranea is a source of α‐tocomonoenol, and its concentration, in contrast to α‐tocopherol, is not affected by nitrogen depletion(2024) Montoya‐Arroyo, Alexander; Muñoz‐González, Alejandra; Lehnert, Katja; Frick, Konstantin; Schmid‐Staiger, Ulrike; Vetter, Walter; Frank, Janα-Tomonoenols (αT1) are tocochromanols structurally related to tocopherols (T) and tocotrienols (T3), the bioactive members of the vitamin E family. However, limited evidence exists regarding the sources and biosynthesis of tocomonoenols. Nitrogen depletion increases the content of α-tocopherol (αT), the main vitamin E congener, in microalgae, but little is known regarding its effect on other tocochromanols, such as tocomonoenols and tocotrienols. We therefore quantified the concentrations of T, T1, and T3, in freeze-dried biomass from nitrogen-sufficient, and nitrogen-depleted Monodopsis subterranea (Eustigmatophyceae). The identities of isomers of αT1 were confirmed by LC–MS and GC–MS. αT was the predominant tocochromanol (82% of total tocochromanols). αT1 was present in higher quantities than the sum of all T3 (6% vs. 1% of total tocochromanols). 11′-αT1 was the main αT1 isomer. Nitrogen depletion increased αT, but not αT1 or T3 in M. subterranea. In conclusion, nitrogen depletion increased the content of αT, the biologically most active form of vitamin E, in M. subterranea without affecting αT1 and T3 and could potentially be used as a strategy to enhance its nutritional value but not to increase αT1 content, indicating that αT1 accumulation is independent of that of αT in microalgae.