Core Facility Hohenheim
Permanent URI for this collection
Browse
Browsing Core Facility Hohenheim by Subject "Acrylamide"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Publication The antioxidant potential of various wheat crusts correlates with AGE content independently of acrylamide(2023) Wächter, Kristin; Longin, Carl Friedrich H.; Winterhalter, Patrick R.; Bertsche, Ute; Szabó, Gábor; Simm, AndreasEpidemiological studies have indicated that the consumption of whole-grain products is associated with a reduced risk of cardiovascular diseases, type II diabetes, and cancer. In the case of bread, high amounts of antioxidants and advanced glycation end products (AGEs) are formed during baking by the Maillard reaction in the bread crust; however, the formation of potentially harmful compounds such as acrylamide also occurs. This study investigated the antioxidant responses of different soluble extracts from whole-grain wheat bread crust extracts (WBCEs) in the context of the asparagine, AGE, and acrylamide content. For that, we analyzed nine bread wheat cultivars grown at three different locations in Germany (Hohenheim, Eckartsweier, and Oberer Lindenhof). We determined the asparagine content in the flour of the 27 wheat cultivars and the acrylamide content in the crust, and measured the antioxidant potential using the induced expression of the antioxidant genes GCLM and HMOX1 in HeLa cells. Our study uncovered, for the first time, that the wheat crust’s antioxidant potential correlates with the AGE content, but not with the acrylamide content. Mass spectrometric analyses of WBCEs for identifying AGE-modified proteins relevant to the antioxidant potential were unsuccessful. However, we did identify the wheat cultivars with a high antioxidant potential while forming less acrylamide, such as Glaucus and Lear. Our findings indicate that the security of BCEs with antioxidative and cardioprotective potential can be improved by choosing the right wheat variety.Publication Mineral and phytic acid content as well as phytase activity in flours and breads made from different wheat species(2023) Longin, C. Friedrich. H.; Afzal, Muhammad; Pfannstiel, Jens; Bertsche, Ute; Melzer, Tanja; Ruf, Andrea; Heger, Christoph; Pfaff, Tobias; Schollenberger, Margit; Rodehutscord, MarkusWheat is of high importance for a healthy and sustainable diet for the growing world population, partly due to its high mineral content. However, several minerals are bound in a phytate complex in the grain and unavailable to humans. We performed a series of trials to compare the contents of minerals and phytic acid as well as phytase activity in several varieties from alternative wheat species spelt, emmer and einkorn with common wheat. Additionally, we investigated the potential of recent popular bread making recipes in German bakeries to reduce phytic acid content, and thus increase mineral bioavailability in bread. For all studied ingredients, we found considerable variance both between varieties within a species and across wheat species. For example, whole grain flours, particularly from emmer and einkorn, appear to have higher mineral content than common wheat, but also a higher phytic acid content with similar phytase activity. Bread making recipes had a greater effect on phytic acid content in the final bread than the choice of species for whole grain flour production. Recipes with long yeast proofing or sourdough and the use of whole grain rye flour in a mixed wheat bread minimized the phytic acid content in the bread. Consequently, optimizing food to better nourish a growing world requires close collaboration between research organizations and practical stakeholders ensuring a streamlined sustainable process from farm to fork.