Browsing by Subject "Biological invasions"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Publication Alien plant fitness is limited by functional trade‐offs rather than a long‐term increase in competitive effects of native communities(2023) Brendel, Marco R.; Schurr, Frank M.; Sheppard, Christine S.Alien plants experience novel abiotic conditions and interactions with native communities in the introduced area. Intra‐ and interspecific selection on functional traits in the new environment may lead to increased population growth with time since introduction (residence time). However, selection regimes might differ depending on the invaded habitat. Additionally, in high‐competition habitats, a build‐up of biotic resistance of native species due to accumulation of eco‐evolutionary experience to aliens over time may limit invasion success. We tested if the effect of functional traits and the population dynamics of aliens depends on interspecific competition with native plant communities. We conducted a multi‐species experiment with 40 annual Asteraceae that differ in residence time in Germany. We followed their population growth in monocultures and in interspecific competition with an experienced native community (varying co‐existence times between focals and community). To more robustly test our findings, we used a naïve community that never co‐existed with the focals. We found that high seed mass decreased population growth in monocultures but tended to increase population growth under high interspecific competition. We found no evidence for a build‐up of competition‐mediated biotic resistance by the experienced community over time. Instead, population growth of the focal species was similarly inhibited by the experienced and naïve community. By comparing the effect of experienced and naïve communities on population dynamics over 2 years across a large set of species with a high variation in functional traits and residence time, this study advances the understanding of the long‐term dynamics of plant invasions. In our study system, population growth of alien species was not limited by an increase of competitive effects by native communities (one aspect of biotic resistance) over time. Instead, invasion success of alien plants may be limited because initial spread in low‐competition habitats requires different traits than establishment in high‐competition habitats.Publication Complex European invasion history of Anoplophora glabripennis (Motschulsky): new insights in its population genomic differentiation using genotype-by-sequencing(2024) Haeussermann, Iris; Hasselmann, MartinAnthropogenic activities like trade facilitate increasing rates of biological invasions. Asian long-horned beetle (ALB), which is naturally distributed in eastern Asia (China, Korean peninsula), was introduced via wood packing materials (WPM) used in trade to North America (1996) and Europe (2001). We used 7810 single nucleotide polymorphisms (SNPs) derived by a genotype-by-sequencing (GBS) approach to decipher the introduction patterns into Europe. This is applied for the first time on European ALB outbreaks from Germany, Switzerland, and Italy, both from still active and already eradicated infestations. The genome-wide SNPs detected signs of small and highly structured populations within Europe, showing clear founder effects. The very high population differentiation is presumably derived from multiple independent introductions to Europe, which are spatially restricted in mating. By admixture and phylogenetic analyses, some cases of secondary dispersal were observed. Furthermore, some populations suggest admixture, which might have been originated by either multiple introductions from different sources into the new sites or recurrent introductions from an admixed source population. Our results confirmed a complex invasion history of the ALB into Europe and the usability of GBS obtained SNPs in invasion science even without source populations.Publication Simulating the spread and establishment of alien species along aquatic and terrestrial transport networks: A multi‐pathway and high‐resolution approach(2022) Bagnara, Maurizio; Nowak, Larissa; Boehmer, Hans Juergen; Schöll, Franz; Schurr, Frank M.; Seebens, HannoThe introduction and further spread of many alien species have been a result of trade and transport. Consequently, alien species are often found close to traffic infrastructure and urban areas. To contain and manage the spread of alien species, it is essential to identify and predict major routes of spread, which cannot be obtained by applying common modelling approaches such as species distribution models. Here, we present a new model called CASPIAN to simulate the dispersal of alien species along traffic infrastructure and the establishment of populations along these routes. The model simulates simultaneous spread of species of up to eight different modes of transport along roads, railways and waterways. We calibrated and validated the model using two species that spread within Germany as case studies: the terrestrial plant Senecio inaequidens and the freshwater clam Corbicula fluminea, and performed a shortest path analysis to quantify the relative importance of individual routes for spread. The application of the model yielded detailed predictions of dispersal and establishment for >600,000 segments of the traffic network throughout Germany. Once calibrated, the model captured the general spread dynamics of the two species with higher accuracy for the freshwater environment due to the higher quality of data available for the aquatic species. The quantification of spread routes using the shortest path analysis revealed a clear backbone of major routes of spread, which varied depending on the type of traffic network and the starting points considered. Major routes of spread aligned with high traffic intensities, but high traffic per se did not necessarily result in high spread intensities. Synthesis and application. By simulating the spreading dynamics of alien species along transport networks across multiple pathways, CASPIAN enables the identification of major spread routes along different dispersal pathways and quantification of their relative importance, which helps prioritising pathways of introduction as required by international biodiversity goals such as the CBD Aichi targets.
