Browsing by Subject "Biostimulants"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Publication A global network meta-analysis of the promotion of crop growth, yield, and quality by bioeffectors(2022) Herrmann, Michelle Natalie; Wang, Yuan; Hartung, Jens; Hartmann, Tobias; Zhang, Wei; Nkebiwe, Peteh Mehdi; Chen, Xinping; Müller, Torsten; Yang, HuaiyuBioeffector (BE) application is emerging as a strategy for achieving sustainable agricultural practices worldwide. However, the effect of BE on crop growth and quality is still controversial and there is still no adequate impact assessment that determines factors on the efficiency of BE application. Therefore, we carried out a network metaanalysis on the effect of BEs using 1,791 global observations from 186 studies to summarize influencing factors and the impact of BEs on crop growth, quality, and nutrient contents. The results show that BEs did not only improve plant growth by around 25% and yield by 30%, but also enhanced crop quality, e.g., protein (55% increase) and soluble solids content (75% increase) as well as aboveground nitrogen (N) and phosphate (P) content by 28 and 40%, respectively. The comparisons among BE types demonstrated that especially non-microbial products, such as extracts and humic/amino acids, have the potential to increase biomass growth by 40–60% and aboveground P content by 54–110%. The soil pH strongly influenced the efficiency of the applied BE with the highest effects in acidic soils. Our results showed that BEs are most suitable for promoting the quality of legumes and increasing the yield of fruits, herbs, and legumes. We illustrate that it is crucial to optimize the application of BEs with respect to the right application time and technique (e.g., placement, foliar). Our results provide an important basis for future research on the mechanisms underlying crop improvement by the application of BEs and on the development of new BE products.Publication Limitations of soil-applied non-microbial and microbial biostimulants in enhancing soil P turnover and recycled P fertilizer utilization: A study with and without plants(2024) Herrmann, Michelle Natalie; Griffin, Lydia Grace; John, Rebecca; Mosquera-Rodríguez, Sergio F.; Nkebiwe, Peteh Mehdi; Chen, Xinping; Yang, Huaiyu; Müller, TorstenIntroduction: Phosphorus recovery from waste streams is a global concern due to open nutrient cycles. However, the reliability and efficiency of recycled P fertilizers are often low. Biostimulants (BS), as a potential enhancer of P availability in soil, could help to overcome current barriers using recycled P fertilizers. For this, a deeper understanding of the influence of BSs on soil P turnover and the interaction of BSs with plants is needed. Methods: We conducted an incubation and a pot trial with maize in which we testednon-microbial (humic acids and plant extracts) and microbial BSs (microbial consortia) in combination with two recycled fertilizers for their impact on soil P turnover, plant available P, and plant growth. Results and discussion: BSs could not stimulate P turnover processes (phosphatase activity, microbial biomass P) and had a minor impact on calcium acetate-lactate extractable P (CAL-P) in the incubation trial. Even though stimulation of microbial P turnover by the microbial consortium and humic acids in combination with the sewage sludge ash could be identified in the plant trial with maize, this was not reflected in the plant performance and soil P turnover processes. Concerning the recycled P fertilizers, the CAL-P content in soil was not a reliable predictor of plant performance with both products resulting in competitive plant growth and P uptake. While this study questions the reliability of BSs, it also highlights the necessity toimprove our understanding and distinguish the mechanisms of P mobilization in soil and the stimulation of plant P acquisition to optimize future usage.Publication Microbial consortia as inoculants for improvedcrop performance(2020) Bradácová, Klára; Neumann, GünterThe use of microbial consortia products (MCP) based on combinations of different strains of plant growth-promoting microorganisms (PGPM) and frequently also on non-microbial bio-stimulants (BS) with complementary beneficial properties, is discussed as a strategy to increase the efficiency and the flexibility of BS-based crop production strategies under variable environmental conditions. Moreover, MCP application aims at the restoration of plant-beneficial, soil biological processes disturbed by soil degradation and intensive use of agro-chemicals. This PhD thesis was initiated to characterize the modes of action and the potential advantages of a representative commercial MCP formulation over selected single strain PGPM inoculants, with documented effects on plant growth promotion and pathogen suppression. In total, nine pot and field experiments were conducted with three crops (maize, spring wheat, tomato) on seven different soils with three organic and inorganic fertilization regimes. Only in one out of nine experiments conducted in this thesis, clear evidence for superior MCP performance was detectable in a drip-irrigated tomato field experiment conducted under the challenging environmental conditions of the Negev desert in Israel (Bradáčová et al., 2019c). This finding demonstrates that MCP inoculants can exhibit an advantage over single strain inoculants but not as a general feature. Selective interactions with the type and dosage of the selected fertilizers, as well as avoidance of inhibitory effects on root growth during MCP rhizosphere establishment, have been identified as critical factors. A further characterization of the conditions, promoting beneficial plant-MCP interactions is mandatory for a more targeted and reproducible MCP application.Publication Micronutrients, silicon and biostimulants as cold stress protectants in maize(2020) Moradtalab, Narges; Streck, ThiloMitigation of abiotic stress in crops is a feature attributed to various so-called biostimulants based on plant growth-promoting microorganisms (PGPMs) plant-, compost- and seaweed extracts, protein hydrolylates, chitosan derivatives etc. but also to mineral nutrients with protective functions, such as zinc (Zn), manganese (Mn), boron (B), calcium (Ca) and silicon (Si), recommended as stress protectants in commercial formulations. This study focussed on the effects of selected biostimulants on cold stress mitigation during early growth in maize, as a major stress factor for cultivation of tropical and subtropical crops in temperate climates. Chilling stress and micronutrient supplementation Chilling stress, induced by moderately low soil temperatures (8-14°C) in a controlled root cooling system, was associated with inhibition of shoot growth, oxidative leaf damage (chlorosis, necrosis accumulation of stress anthocyanins) and a massive decline in root length (Chapter 4 and 5). Due to inhibition of root growth, nutrient acquisition in general was impaired. However, nutrient deficiencies were recorded particularly for the micronutrients zinc (Zn) and manganese (Mn). The impaired Zn and Mn status was obviously related with the observed limitations in plant performance, which were reverted by exogenous Zn and Mn supplementation (0.5 mg plant-1), finally leading to restored nutrient acquisition and improved plant recovery after termination of the cold stress period. Zinc and manganese deficiency was mainly related with impaired uptake of the micronutrients, since the cold stress-induced deficiency symptoms persisted even in hydroponic culture when all nutrients were freely available. Beneficial effects of Zn/Mn supplementation were only detectable when the micronutrients were supplied prior to the onset of the stress period via seed soaking, seed dressing or fertigation, when uptake and internal translocation was still possible. A transcriptome analysis of the shoot tissue (Chapter 5) revealed 1400 differentially expressed transcripts (DETs) after 7-days exposure of maize seedlings to chilling stress of 12°C, mostly associated with down-regulation of selected functional categories (BINs), related with photosynthesis, synthesis of amino acids, lipids and cell wall precursors, transport of mineral nutrients (N, P, K,), metal handling and synthesis of growth hormones (auxins, gibberellic acid) but also of jasmonic (JA) and salicylic acids (SA) involved in stress adaptations. In accordance with the impaired micronutrient status and oxidative leaf damage in response to the cold stress treatments, downregulation was also recorded for transcripts related with oxidative stress defence (superoxide dismutases SOD, catalase, peroxidases POD, synthesis of phenylpropanoids and lignification), particularly dependent on the supply of micronutrients as co-factors. Upregulation was recorded for BINs related with degradation of lipids, of cell wall precursors, synthesis of waxes and certain flavonoids and of stress hormones, such as abscisic acid (ABA) and ethylene but degradation of growth-promoting cytokinins (CK). Accordingly, supplementation of Zn and Mn increased the accumulation of anthocyanins and antioxidants, the activities of superoxide dismutase and peroxidases, associated with reduced ROS accumulation (H2O2), mitigation of oxidative leaf damage and improved plant recovery at the end of the cold stress period (Chapter 5 and 6). Effects of seaweed extracts Cold-protective properties similar to Zn/Mn supplementation, associated with an improved Zn/Mn-nutritional status and reduced oxidative damage, were recorded also after fertigation with seaweed extracts prior to the onset of the stress treatments (Chapter 4). However, this effect was detectable only with seaweed extract formulations rich in Zn/Mn (Algavyt+Zn/Mn; Algafect; 6-70 mg kg DM-1) but not with a more highly purified formulation (Superfifty) without detectable micronutrient contents. This finding suggests that the cold-protective effect by soil application of seaweed extracts is based on an improved micronutrient supply and not to an elicitor effect, frequently reported in the literature for stress-protective functions after foliar application of seaweed extracts. Silicon fertilization Similar to seaweed extracts, also silicon (Si), applied by seed soaking or fertigation with silicic acid, mimicked the cold-protective effects of Zn/Mn supplementation in maize seedlings (Chapter 5). The Zn/Mn status of the Si-treated plants was improved although, in this case no additional micronutrient supply was involved. However, Si application significantly reduced leaching losses of Zn/and Mn by 50-70%, as a consequence of cold stress-induced membrane damage in germinating maize seeds and favoured the root to shoot translocation of Zn. This was associated with a restoration of gene expression, similar to the profiles recorded for unstressed control plants. However, the expression of genes related with synthesis and signal transduction of ABA, as central regulator of adaptive cold stress responses in plants, was even more strongly upregulated than in the cold-stressed controls. Accordingly, expression of cold stress adaptations involved in oxidative stress defence (SOD, peroxidases, phenolics, antioxidants) and the reduction of oxidative leaf damage and improved plant recovery were similar to the plants with Zn/Mn supplementation. Plant growth promoting microorganisms Cold-protective functions were recorded also for selected microbial inoculants (Chapter 6). However, out of five tested inoculant formulations, based on strains of Pseudomonas sp., DSMZ13134, Bacillus amyloliquefaciens FZB42, Bacillus atrophaeus ABI05, Penicillium sp. PK112 (BFOD) and a consortium of Trichoderma harzianum OMG16 and five Bacillus strains (Combi-A), a significant protective effect was detectable only for Penicillium sp. and particularly for CombiA. The CombiA consortium significantly increased root length and reduced oxidative leaf damage of cold-stressed plants, associated with increased SOD and POD activities and accumulation of phenolics and antioxidants. Root growth stimulation was related with increased IAA (indole acetic acid) tissue contents and increased expression of genes involved in IAA biosynthesis (ZmTSA) transport (ZmPIN1A) and perception (ZmAFR12). The tissue concentrations of ABA were not affected by the microbial inoculants, but the shoot concentrations of JA and SA increased, suggesting an effect by induced systemic resistance (ISR). Moreover, root concentrations of cytokinins (CKs) as ABA antagonists and expression of IPT genes involved in CK biosynthesis declined, leading to an increased ABA/cytokinin ratio and accordingly to increased expression of ABA responsive genes (ZmABF2). These findings suggest that CombiA mainly acted via improvement of root growth and nutrient acquisition by activation of the plant auxin metabolism and activation of cold protective metabolic responses by induction of ISR via JA/SA signalling and ABA-mediated responses, due to inhibition of CK biosynthesis. Synergistic interactions While the different cold-stress protectants investigated in this study induced similar protective plant responses, synergistic effects were obtained by combined applications (Chapter 6). The combination of CombiA inoculation with Zn/Mn supplementation further increased the plant micronutrient status and the cold-protective effects of CombiA. For all treatments, generally the expression of cold-protective effects was further improved by use of DMPP-stabilized ammonium fertilizers instead of nitrate fertilization. Ammonium fertilization promoted micronutrient acquisition via root-induced rhizosphere acidification, increased the ABA shoot concentrations with a moderate activation of metabolic cold stress responses and stimulated root colonization of Trichoderma harzianum OMG16 (CombiA). Field performance A comparative evaluation of the various cold protectants under field conditions with stabilized ammonium starter fertilization, revealed a severely reduced seedling emergence at six weeks after sowing (44%) due to extremely cold and wet soil conditions by the end of April in 2016, associated with a low Zn-nutritional status (32 mg kg-1 shoot DM). Significant improvements were recorded particularly for starter treatments including Zn/Mn seed dressing (emergence 56%) or seed priming with K2SiO4 (emergence 72%) and also by inoculation with the fungal PGPM strain Penicillium sp. BFOD (emergence 49%) associated with a doubling of the Zn tissue concentrations. Even after re-sowing, a significant yield increase for silo maize was recorded exclusively for the K2SiO4 treatment (Chapter 5). Taken together, the findings suggest that exploitation of synergistic interactions by combined starter applications of protective nutrients with selected biostimulants, could offer a cost-effective option for cold-stress prophylaxis in sensitive crops.Publication Testing plant growth promoting microorganisms in the field - a proposal for standards(2024) Neuhoff, Daniel; Neumann, Günter; Weinmann, MarkusIn the European Union and worldwide there are a burgeoning markets for plant growth promoting microorganisms (PGPM) and other biological agents as soil improvers, bio-fertilizers, plant bio-stimulants, and biological control agents or bio-pesticides. Microbial agents have a major share in this development. The use of such products is often advertised with the promise of contributing to sustainable agricultural practices by increasing crop growth and yield and offering an alternative or substitute to decrease the dependency of agriculture on hazardeous agrochemicals. In contrast to registered microbial plant protection products, PGPM that are marketed in the EU as soil improvers or plant biostimulants, are not strictly required to have proven minimum efficacy levels under field conditions. Manufacturers only have to ensure that these products do not pose unacceptable risks to human, animal or plant health, safety or the environment. Uniform guidelines comparable to the EPPO - standards (European and Mediterranean Plant Protection Organisation) to test the efficacy in field trials are not available. This paper attempts to fill the gap. It proposes guidelines for PGPM field trial design and implementation, as well as recommendations for the type and scope of data collection and evaluation. Selected research papers from literature were evaluated to analyze, whether and to what extent the requirements are already met. The majority of the papers had a clear experimental design followed by proper data evaluation. Frequent deficiencies were the low number of tested environments and crop species, insufficient site and agronomic management description and missing data on soil humidity and temperature. Using the suggested standards is assumed to increase the expressive power of tested microbial products.