Browsing by Subject "Chlorophyllfluoreszenz"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Publication From greenhouse to field practice : herbicide resistance detection using chlorophyll-fluorescence-imaging technology(2017) Wang, Pei; Gerhards, RolandAll over the world, herbicide resistance has developed to one of the most important barriers in weed control, making the implementation of the weed control strategy more complicated. There is an intense need for a rapid, cheap and reliable method to conduct in field detection of herbicide resistant weed populations. In the current thesis with the use of chlorophyll fluorescence imaging technology, such a method is implemented and tested in field conditions. A series of experiments were designed and carried out. The data gathered from these experiments were compiled under three paper articles. Paper 1. A greenhouse experiment was conducted to verify if the parameter, Maximal Photosystem II Quantum Yield (Fv/Fm), could possibly indicate the herbicide efficacy. The chlorophyll-fluorescence-imaging sensor, Weed PAM®, was selected for the measurements. In the first part it was investigated if the Fv/Fm value could differentiate between herbicide sensitive and resistant plants. In the second part two important abiotic stress factors were tested if they affected the Fv/Fm value. I) Six herbicides were tested on herbicide sensitive and resistant Alopecurus myosuroides populations; II) Water shortage and nitrogen deficiency were applied on a herbicide sensitive population to observe their influence on the plants. The sensitive plants presented significantly lower Fv/Fm values than the resistant plants 3 days after treatment (DAT) for the ALS and ACCase inhibitors. On the same day, and for the same treatments the Fv/Fm values of the resistant plants were not affected and similar to the control. Appling a PS II inhibitor reduced the Fv/Fm values of both sensitive and resistant plants rapidly. Yet, sensitive and resistant plants could clearly be separated on 4 DAT based on the different Fv/Fm values. On the other hand, nitrogen deficiency did not influence the photosystem II measurements. Water shortage reduced rapidly the Fv/Fm value of the plants seven days after the application, yet at this point plant symptoms included the death of the plants. According to this experiment, the Weed PAM® sensor has proved its capability to identify the sensitive and resistant A. myosuroides populations shortly after the herbicide application. Paper 2. A verification of the above results was made under field conditions for different A. myosuroides populations and different locations. On the first part 50 populations in total including both sensitive and herbicide resistant populations were tested. The second part field experiments were conducted in ten locations around Germany over two years with the local field population mix. It was investigated if the Weed PAM® sensor could separate between herbicide sensitive and resistant A. myosuroides populations 5 DAT. The different populations were sown in a winter wheat field. Two ACCase- and three ALS- inhibitors were applied. In all herbicide treatments, Fv/Fm values of A. myosuroides were significantly lower than the untreated plants at the 5 DAT. For each location, measurements were conducted at 5 DAT. A visual measurement, to verify the result, was carried out at 21 DAT. In both cases, 95% of the plants were correctly identified as sensitive or resistant. This demonstrated the ability of the Weed PAM® sensor to conduct in field real time detection of herbicide resistant A. myosuroides populations shortly after treatment. Paper 3. Greenhouse and field experiments were carried out to investigate if the chlorophyll fluorescence of soybean plants was altered, under herbicide stress. Herbicide combinations including inhibitors of PS II, DOXP synthase, cell division and microtubule assembly were selected for different pre-emergence treatments. Herbicide combinations including inhibitors of PS II, ALS and ACCase were applied in post-emergence treatments. Chlorophyll fluorescence was measured from the emergence of soybeans until the three/four-leaf stage. Furthermore the stress effect of the different treatments on the soybean plants was determined by measuring their dry biomass. In the greenhouse, post-emergence treatments with ALS and ACCase inhibitors did not seem to induce stress on the soybean plants. As expected, it originally demonstrated low Fv/Fm values when stressed by PS II inhibitors. But the PS II system recovered soon, one week after emergence. Stress induced by other pre-emergence herbicides occurred one week after emergence and lasted longer than the stress induced by the PS II inhibitors. Dry biomass collaborated with the sensor result. Based on the current thesis, the Weed PAM® system can be an important tool in the identification of herbicide resistant weed populations, in a timely manner. It has proven its capabilities both in A. myosuroides as a weed and in soybean plants. This technology will help farmers to take more suitable weed control strategies, as well as less economic and environmental risks.Publication Untersuchungen zum Herbizidstress in Zuckerrüben mit drei feldtauglichen optischen Sensoren und Methoden der Bildanalyse(2014) Roeb, JohannesWeed management in sugar beets is based on the repeated use of herbicide mixtures after crop emergence. Due to the limited selectivity of active ingredients, herbicide treatments not only control the weeds but will reduce the growth of sugar beets also. Yield losses due to herbicide stress are expected to range between 5-15%. Using optical sensors is a nondestructive method to assess changes in reflection, leaf fluorescence or chlorophyll fluorescence kinetics induced by herbicides. To evaluate the applicability of three optical sensors for assessing herbicide stress and to measure the influence of herbicides and herbicide mixtures on sugar beets, a pot experiment was performed at the University of Hohenheim, Germany. Sugar beets were grown under natural light and temperature conditions and treated with the active ingredients metamitron, phenmedipham, desmedipham, ethofumesate, triflusulfuron-methyl and dimethenamid-P in their commercially available formulation and practical dosage. In total five single herbicides as well as five different herbicide mixtures were applied in the cotyledon stage (EC 10), the two-leaf stage (EC 12) or the four- to six-leaf stage (EC 14/16) of sugar beets. Stress reactions were monitored with three optical sensors: Images of a digital camera (Canon EOS 1000D) were used to determine leaf coverage area, plant shape and leaf color. Measurements were performed about every second day and a growth index had been calculated. A multispectral fluorometer (FORCE-A MULTIPLEX®) was used to detect the blue-green fluorescence, red fluorescence and far-red fluorescence and to calculate fluorescence indices. A portable imaging sensor of chlorophyll fluorescence kinetics (WALZ IMAGING PAM) was used on a daily basis to determine changes in the maximum quantum efficacy (Fv/Fm) induced by herbicide treatments. Four respectively two weeks after the treatment sugar beets were harvested for dry matter analysis. For each of the herbicide treatments and for each of the three application dates five Mitscherlich pots were used for replication. Each pot had about four sugar beet plants. Based on digital imaging it was possible to measure leaf coverage area and determine growth depressions induced by herbicide treatments containing mixtures of the active ingredients phenmedipham, desmedipham and ethofumesate. Herbicide mixtures with more active ingredients increased the stress reaction of sugar beets. Differentiation between untreated plants and sugar beets treated with different herbicides or mixtures was possible a few days after application. Results were correlated with dry matter. Changes in plant shape parameters indicated a delayed development of herbicide treated plants. Higher red content of leaf color was attributed to a relative loss of chlorophyll. Measurements with the FORCE-A MULTIPLEX® fluorometer detected an increase in red and far-red fluorescence but not blue-green fluorescence within 1-2 days after treatments with the aforementioned mixture of active ingredients. About the same trends were found at all application dates. Most fluorescence values were affected by growth stage and leaf area of sugar beets. Thus, although differences between treated and untreated plants were strong, it was not possible to discriminate between stress reactions on different herbicide treatments. Based on the maximum quantum efficacy (Fv/Fm) measured with the WALZ IMAGING-PAM chlorophyll fluorescence sensor previous studies, describing the time course of stress reaction on application of PSII-inhibitors in sugar beets were confirmed. After a strong decrease of Fv/Fm within one day, recovery to the initial value was observed within ten days. Quantification of herbicide stress induced by PSII-inhibitors was possible due to different intensities and durations of the stress reaction. Photochemical stress response to treatments with metamitron or chloridazon was lower than with products containing phenmedipham or desmedipham. Stress reaction on herbicide mixtures not only depended on content of PSII-inhibitors but also on formulation. Weather conditions were more important than the sugar beet development stage considering the stress reaction. Observations from previous studies, indicating an increase in herbicide stress after precipitation and at low temperatures, were also confirmed in this study. Differences in stress reactions of cotyledons and first true leaves can be explained by a higher uptake of herbicides in young tissues. The influence of other herbicides, mixtures, dosages and formulations on herbicide stress in sugar beets has to be further investigated. Moreover the complex interrelations between sugar beet development stage, weather conditions and stress reaction could only be investigated in systematic field trials. For the measurement of stress reactions on herbicides the described optical sensors and methods can be used, each having different advantages and disadvantages.