Browsing by Subject "Citizen science"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Advancing soybean adaptation to Central European growth conditions with novel breeding tools(2020) Jähne, Felix; Würschum, TobiasAccording to the European Soy Monitor 2018 (European Soy Monitor, 2018), there is a wide discrepancy in the EU between market demands and general sustainability aims regarding soybean products. Europe needs to take action, if it wants to maintain its protein demands and at the same time requests a reduction in the destruction of globally important tropical and subtropical ecosystems. One step towards more sustainable soybean products lies in the increase of domestic production which has the potential to decrease soybean imports from areas of unsustainable cultivation. An augmented EU production of soybeans can be achieved for example by increasing the yield potential of soybeans in areas where successful cultivation already takes place or by expanding the cultivation area to more northern parts of Central Europe. Breeding for new, improved and adapted soybean cultivars that meet those terms, is a key activity towards that aim. This dissertation elucidates three different ways how the adaptation of soybeans to the climatic and photoperiodic conditions of Central Europe can be assisted and even accelerated: 1) By using off-season climate-controlled LED chambers to enable a speed breeding single seed descent approach. A 10 h light regime, rich in blue and deprived of far-red light emission is capable to significantly reduce and synchronise the generation time of soybeans. It was possible to shorten the life cycle for a panel of 8 soybean cultivars from different maturity groups to 77 days. This allows several generations of soybeans to be grown within one year. For the short day crops rice and amaranth on the other hand, different light quality parameters were favoured. In those crops mean flowering time was accelerated when far-red light was included in the light protocol. This underlines the importance of a crop-specific light regime in order to realise the full potential of LED-based speed breeding single seed descent. 2) By including experiments in climate-control chambers in combination with molecular tools (i.e. genomic prediction) to advance cold tolerance in soybeans. This quantitatively inherited key trait is necessary to adapt soybeans to colder regions and consequently extend growing areas of this crop to higher latitudes in Europe. In the biparental soybean population Merlin × Sigalia (103 recombinant inbred lines) three QTL for cold tolerance during pod onset were found on chromosomes 7, 11 and 13. The relatively small proportion of genotypic variance for this trait explained by these QTL underlines the quantitative nature of cold tolerance. Genomic prediction was shown to be a promising approach to select for cold stress tolerance. Scenarios with different test set sizes and prediction models were evaluated. In scenarios with smaller test set sizes prediction accuracies increased if known and confirmed QTL were included in the prediction model. 3) By incorporating citizen science into the breeding process. The citizen science project ‘1000 Gärten’ from 2016 approached this topic. Phenotypic data from soybean cultivars and breeding lines were collected by citizen scientists in 2492 gardens throughout Germany which generated a unique dataset. Among many other results this study was able to show that in 2016 and within the early maturity segment of soybeans the factor temperature influenced flowering and maturity to a higher degree than photoperiod although day length differed by over an hour between the north and the south of Germany during the time of flowering. It was shown that this admittedly challenging tool can realise a significant impact not only regarding the possibility of a highly multi-environmental screening of breeding material but also by connecting plant breeding, agriculture and potential future costumers in order to raise awareness and acceptance of a crop in larger parts of the society - a factor that may not be highlighted enough when a new crop is introduced to our agriculture. These approaches should not be seen as an alternative to classical plant breeding, but rather considered as valuable additional tools that can contribute to conventional breeding of soybeans, as well as other crops. If applied, the presented tools may assist plant breeding to pave Europe’s way towards a greener and more sustainable future that is urgently needed.Publication Update and prognosis of Dermacentor distribution in Germany: Nationwide occurrence of Dermacentor reticulatus(2022) Springer, Andrea; Lindau, Alexander; Probst, Julia; Drehmann, Marco; Fachet, Katrin; Thoma, Dorothea; Rose Vineer, H.; Noll, Madeleine; Dobler, Gerhard; Mackenstedt, Ute; Strube, ChristinaA considerable range expansion of Dermacentor reticulatus has been observed in several European countries, which is concerning in the light of its vector function for several pathogens, including Babesia canis and tick-borne encephalitis virus (TBEV). The present study provides an update on the distribution of Dermacentor ticks in Germany, using a citizen science approach. Ticks were collected by citizens from March 2020 to May 2021, and submitted along with information on the date and location of collection, potential hosts and details about the circumstances of discovery. In total, 3,292 Dermacentor specimens were received, of which 76.4% (2,515/3,292) were identified as D. reticulatus and 23.0% (758/3,292) as D. marginatus, while 0.6% (19/3,292) were too damaged for species-level identification. Dermacentor reticulatus was received from all federal states of Germany. Maxent species distribution models predicted suitable environmental conditions for D. reticulatus throughout Germany. Findings on the vegetation or on pastured animals without travel history confirmed the occurrence of this tick species as far north as the most northern German federal state Schleswig-Holstein. In contrast, the distribution of D. marginatus still appears to be limited to southwestern Germany, although the northward shift of the distribution limit observed in the preceding citizen science study, as compared with previous published distributions, was confirmed. This shift was also predicted by Maxent species distribution models, reflecting the broader distribution of the tick occurrence data contributed by citizens. Most D. reticulatus ticks were found on dogs (1,311/1,960, 66.9%), while D. marginatus was mainly discovered on hoofed animals (197/621, 31.7%) and humans (182/621, 29.3%). Human tick bites were reported in 0.7% (14/1,960) of host-assigned D. reticulatus and 3.4% (21/621) of host-assigned D. marginatus. Further studies to investigate an increasing endemisation of Babesia canis in Germany as well as the relevance of D. reticulatus for TBEV spread throughout the country, e.g., by traveling dogs, are urgently needed. In view of the activity of D. reticulatus during winter or the colder months, which complements that of Ixodes ricinus, a year-round tick protection of at least dogs is strongly recommended.