Repository logo
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
    Communities & Collections
    All of hohPublica
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
  1. Home
  2. Browse by Subject

Browsing by Subject "Environmental covariates"

Type the first few letters and click on the Browse button
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Projecting results of zoned multi-environment trials to new locations using environmental covariates with random coefficient models: accuracy and precision
    (2021) Buntaran, Harimurti; Forkman, Johannes; Piepho, Hans-Peter
    Multi-environment trials (MET) are conducted to assess the performance of a set of genotypes in a target population of environments. From a grower’s perspective, MET results must provide high accuracy and precision for predictions of genotype performance in new locations, i.e. the grower’s locations, which hardly ever coincide with the locations at which the trials were conducted. Linear mixed modelling can provide predictions for new locations. Moreover, the precision of the predictions is of primary concern and should be assessed. Besides, the precision can be improved when auxiliary information is available to characterize the targeted locations. Thus, in this study, we demonstrate the benefit of using environmental information (covariates) for predicting genotype performance in some new locations for Swedish winter wheat official trials. Swedish MET locations can be stratified into zones, allowing borrowing information between zones when best linear unbiased prediction (BLUP) is used. To account for correlations between zones, as well as for intercepts and slopes for the regression on covariates, we fitted random coefficient (RC) models. The results showed that the RC model with appropriate covariate scaling and model for covariate terms improved the precision of predictions of genotypic performance for new locations. The prediction accuracy of the RC model was competitive compared to the model without covariates. The RC model reduced the standard errors of predictions for individual genotypes and standard errors of predictions of genotype differences in new locations by 30–38% and 12–40%, respectively.
  • Loading...
    Thumbnail Image
    Publication
    Regression approaches for modeling genotype-environment interaction and making predictions into unseen environments
    (2026) Hrachov, Maksym; Piepho, Hans-Peter; Rahman, Niaz Md. Farhat; Malik, Waqas Ahmed; Hrachov, Maksym; Biostatistics Unit, Institute of Crop Science, University of Hohenheim, 70593, Stuttgart, Germany; Piepho, Hans-Peter; Biostatistics Unit, Institute of Crop Science, University of Hohenheim, 70593, Stuttgart, Germany; Rahman, Niaz Md. Farhat; Bangladesh Rice Research Institute (BRRI), Gazipur, Bangladesh; Malik, Waqas Ahmed; Biostatistics Unit, Institute of Crop Science, University of Hohenheim, 70593, Stuttgart, Germany
    In plant breeding and variety testing, there is an increasing interest in making use of environmental information to enhance predictions for new environments. Here, we will review linear mixed models that have been proposed for this purpose. The emphasis will be on predictions and on methods to assess the uncertainty of predictions for new environments. Our point of departure is straight-line regression, which may be extended to multiple environmental covariates and genotype-specific responses. When observable environmental covariates are used, this is also known as factorial regression. Early work along these lines can be traced back to Stringfield & Salter (1934) and Yates & Cochran (1938), who proposed a method nowadays best known as Finlay-Wilkinson regression. This method, in turn, has close ties with regression on latent environmental covariates and factor-analytic variance-covariance structures for genotype-environment interaction. Extensions of these approaches – reduced rank regression, kernel- or kinship-based approaches, random coefficient regression, and extended Finlay-Wilkinson regression – will be the focus of this paper. Our objective is to demonstrate how seemingly disparate methods are very closely linked and fall within a common model-based prediction framework. The framework considers environments as random throughout, with genotypes also modeled as random in most cases. We will discuss options for assessing uncertainty of predictions, including cross validation and model-based estimates of uncertainty, the latter one being estimated using our new suggested approach. The methods are illustrated using a long-term rice variety trial dataset from Bangladesh.

  • Contact
  • FAQ
  • Cookie settings
  • Imprint/Privacy policy