Browsing by Subject "Ertragsfähigkeit"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Publication Economic analysis and policy implications of wastewater use in agriculture in the central region of Ethiopia(2008) Weldesilassie, Alebel Bayrau; Dabbert, StephanThe general objective of this study was to analyze the impact of wastewater use in agriculture. It mainly focused on three aspects of wastewater use for irrigation and their policy implications: impact on crop production and productivity; its impact on the health of farmers; and the value attached to its safe use for irrigation. The main objectives of the study were, therefore, 1) to define the farming system of wastewater farmers and to analyze the impact of wastewater on crop productivity; 2) to analyze the prevalence of the actual health risks to farmers and estimate the health costs associated with the use of wastewater in irrigation; and 3) to estimate the farmer?s willingness to pay for improved or safe use of wastewater for crop production. This study used mainly primary data collected from a household survey conducted on 415 wastewater and freshwater farm households operating irrigated agricultural activities within and around Addis Ababa, a central region of Ethiopia. A Cobb Douglas production function is specified to analyze the impact of wastewater on crop productivity. The production function was estimated using a Censored Least Absolute Deviation (CLAD) econometric model. To analyze the health impact of wastewater, the probability of illness was estimated based on the theory of the utility maximizing behavior of households subject to the conventional farm household production model modified by adding a health production function. The economic value of safe use of wastewater is estimated from data obtained from a contingent valuation survey administered by in-person interviews. A dichotomous choice model is used to elicit the farmers? willingness to pay. Bivariate probit and interval regression models are used to analyze the factors determining the farmers? willingness to pay for safe use of wastewater for crop production. The study shows that the livelihoods of wastewater farm households depend on the wastewater farm. Income from a wastewater farm accounts for 62% of total annual household income, ranging from 27% to 97%. About 61% of the vegetable market of Addis Ababa, the capital city of Ethiopia with more than five million people, is produced from the wastewater farms. Leafy vegetables, which are eaten raw, are mainly produced in less polluted wastewater farms and root vegetables are produced in more polluted wastewater farms. The study revealed that wastewater farm households use significantly less doses of chemical fertilizer compared to the freshwater irrigators. However, they spend three times more on seed and five times more on farm labor. Net farm return per hectare of plots irrigated with wastewater is significantly higher than for plots irrigated with freshwater. The results also indicate that the predicted median output value per hectare is significantly higher in wastewater irrigated plots compared to plots irrigated with freshwater. The CLAD estimation result shows that higher productivity of wastewater plots is explained by investments in inputs (organic fertilizer, improved seed and agricultural extension services), ownership of plots and levels of pollution of the irrigation water. The overall effect of wastewater on crop productivity is negative and insignificant (compared to freshwater). Plots irrigated with less polluted wastewater are more productive than plots irrigated with more polluted wastewater. The implication of the result is that even if wastewater is a reliable source of irrigation water and contains essential plant nutrients such as NPK, the nutrient content exceeds the recommended level of the plant requirement (e.g. nitrogen) or it contains toxic elements (e.g. nickel, zinc) above the recommended limit, and thereby reduce yield. Due to unsafe wastewater irrigation systems, wastewater use in irrigation actually poses health risks to farmers. Apart from working on wastewater farms, different risk factors prevail that can cause wastewater-related diseases in the studied areas. This study shows that major risk factors causing illness are household demographic characteristics, hygienic behavior of farm families and poor access to sanitation services. Lack of awareness on health risk of wastewater as well as working without protective clothing on the farm are also important risk factors in the study area. The distribution of these risk factors varies between the wastewater and freshwater irrigation areas. The most common incidence of illness reported by farm households are intestinal infection due to hookworm and Ascaris, diarrhea and skin diseases, which also varies between the two groups of farmers as well as within the different areas of wastewater. The findings of this study show that the prevalence of illness is not only significantly higher in farmers working on wastewater farms compared to freshwater irrigators, but is also significantly higher in wastewater areas where the pollution level is higher. The probability of being sick with an intestinal illness is 15% higher for wastewater farmers than for freshwater farmers. Use of protective clothing during farm work and awareness of health risks in working on wastewater farms significantly reduce illness prevalence. In addition, hygienic behavior of farm families including eating safe raw vegetables, compound sweeping, and washing hands before a meal are important determinants of illness prevalence in wastewater irrigation areas. Therefore, use and provision of protective clothing at affordable prices, creating awareness for safe use of wastewater, and reducing the pollution level of irrigation water can significantly decrease the health risk of wastewater use in irrigation. While each of these policy interventions has a significant effect in reducing health risks, combining these measures will result in more significant reduction of health risks to farmers, and thereby maximize the benefit from the wastewater resource as a source of livelihood and vegetable supply to the residents of nearby cities. Farmers are willing to contribute money to improve the existing unsafe irrigation system. Two options were suggested by farmers to improve the existing situation: enforcing laws against polluters who discharge their wastewater without any kind of treatment, and awareness creation of safe use of wastewater for irrigation. Farmers are willing to pay for the improvement programs and there is a welfare gain to the society from safe use of wastewater for crop production. The benefit from irrigated-farming, membership to water users? association, yield value, off-farm income and working on a wastewater farm all significantly determine the farmers? probability of accepting offered bids for the improvement program. In addition to these variables, multi-purpose uses of irrigation water as well as education level determines the farmers? willingness to pay. Irrigation method has no significant effect on the farmers? willingness to pay, implying that introducing water saving and improved irrigation techniques has an important role in improving the situation without affecting the farmers? willingness to pay. Overall, this study shows that wastewater is a means of livelihood for many poor households, but the existing use of wastewater for crop production actually causes health risks both to farmers and consumers. Farmers are willing to contribute to programs designed to improve the existing situation so that it is possible to maximize the livelihood benefit at minimum health risks. However, the results do not necessarily imply that the cost of improving the situation has to be borne by the farmers only. Although the study focuses on the central region of Ethiopia, most conclusions can have a wider application in other parts of the country and in many sub-Saharan African countries where wastewater is used for irrigation.