Repository logo
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
    Communities & Collections
    All of hohPublica
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
  1. Home
  2. Browse by Subject

Browsing by Subject "Gaussian process regression"

Type the first few letters and click on the Browse button
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Bi-objective optimization of nutrient intake and performance of broiler chickens using Gaussian process regression and genetic algorithm
    (2023) Ahmadi, Hamed; Rodehutscord, Markus; Siegert, Wolfgang
    This study investigated whether quantifying the trade-off between the maxima of two response traits increases the accuracy of diet formulation. To achieve this, average daily weight gain (ADG) and gain:feed ratio (G:F) responses of 7–21-day-old broiler chickens to the dietary supply of three nutrients (intake of digestible glycine equivalents, digestible threonine, and total choline) were modeled using a newly developed hybrid machine learning-based method of Gaussian process regression and genetic algorithm. The dataset comprised 90 data lines. Model-fit-criteria indicated a high model adjustment and no prediction bias of the models. The bi-objective optimization scenarios through Pareto front revealed the trade-off between maximized ADG and maximized G:F and provided information on the needed input of the three nutrients that interact with each other to achieve the trade-off scenarios. The trade-off scenarios followed a nonlinear pattern. This indicated that choosing target values intermediate to maximized ADG and G:F after single-objective optimization is less accurate than feed formulation after quantifying the trade-off. In conclusion, knowledge of the trade-off between maximized ADG and maximized G:F and the needed nutrient inputs will help feed formulators to optimize their feed with a more holistic approach.

  • Contact
  • FAQ
  • Cookie settings
  • Imprint/Privacy policy