Browsing by Subject "Herbizidstress"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Publication A study of integrated weed control strategies for establishing soybean (Glycine max L. MERR.) in the German production system(2017) Weber, Jonas Felix; Gerhards, RolandSoybean (Glycine max L. MERR.) has expanded to become one of the most traded agriculture products worldwide in recent decades. Europe is one of the primary importing regions; however, the dependence on soybean imports has been critically assessed by the public. To reduce the dependency on soybean imports, increased local soybean production should be favoured. In addition to environmental conditions, weeds are a major limiting factor for soybean yield under German climate conditions. Weeds can be successfully controlled with herbicides, although crop injury frequently occurs after application. Sensor-based screening would be helpful for a rapid evaluation of cultivar tolerance to herbicide application. Alternatively, mechanical weed control strategies can be applied. Since soybean production is currently introduced to the regional crop production, weed control efficiency of conventional mechanical tools (e.g., hoeing and harrowing) have to be evaluated. By using automatic guiding systems intra-row elements could be utilised to increase the weed control efficiency of mechanical hoeing. Other than that, agronomical practices such as the tillage system or cover crops influences the occurrence of weeds. The most common practise worldwide for soybean cultivation is the no-tillage system, which has not yet been investigated under local conditions. Therefore, different weed control strategies in soybean production were investigated according to the following major objectives of this thesis: - Detection of crop injury by herbicides using a chlorophyll fluorescence imaging sensor for different soybean cultivars. - Evaluation of the conventional mechanical strategies of hoeing and harrowing in soybean. - Examination of the weed control efficiency in inter- and intra-row areas using RTK-GNSS precision steering and an optical camera guiding system for mechanical weed control in soybean. - Evaluation of the efficiency of ‘tillage’, ‘reduced tillage’ and ‘no- tillage’ cultivation systems and the influence of cover crops on weed suppression in local soybean production. The Imaging-PAM-sensor based on chlorophyll fluorescence imaging was utilised to investigate the response of different soybean cultivars to the application of herbicides. The measurements indicated significant differences with respect to injury to the cultivars after herbicide application. Herbicides containing the active ingredient ‘metribuzin’ resulted in significant differences in the level of crop injury depending on the cultivar. The active ingredients ‘dimethenamid’ and ‘clomazone’ resulted in less injury, independent of the cultivar. The PAM-sensor was able to detect stress symptoms 3 to 7 days before visual symptoms appeared. An investigation of hoeing and harrowing, which are conventional mechanical techniques for weed control, showed 78% and 72% weed control efficiency, respectively. In further experiments, the results of precision steering systems using RTK-GNSS and an optical camera guiding system additionally equipped with intra-row elements (e.g., finger weeders) were compared with the results of conventional hoeing. Mechanical weed control using automatic steering technology and an intra-row element (finger weeder) reduced the weed density by 89% compared with 68% in the conventional hoeing system. With respect to crop yields, statistical benefits of precision steering were not observed. However, the driving speed could be increased from 4 km h−1 in the conventional hoeing system to 10 km h−1 using the automatic steering systems. In an additional experiment, two cover crops species, rye (Secale cereale L.) and barley (Hordeum vulgare L.), were grown for preventive weed control in soybean production. The cover crops were transformed into a mulch layer using a roller-crimper immediately before soybean was sown using a no-tillage technique. Conventional tillage was performed to compare the systems with respect to their weed control efficiency, crop development and soybean yield. The results showed that the no-tillage system had a greater effect on suppressing summer annual weed species (Chenopodium album (L.), Echinochloa crus-galli (L.) P. Beauv. and Amaranthus retroflexus (L.)) than the tillage systems. Conventional tillage and reduced tillage showed increased suppression of the weed species Matricaria inodora (L.), Stellaria media (L.) Vill. and Sonchus arvensis (L.), which were present in the no-tillage system. However, in the conventional tillage and reduced tillage systems, an additional weed control treatment was necessary to suppress the summer annual weeds and ensure high yields. The cover crop rye resulted in weed control similar to that of barley in the no-tillage system. Despite the low weed density, the no-tillage system with a rolled cover crop showed a yield reduced of 47%, whereas the yield of the reduced tillage system was decrease by 23% compared with the conventional tillage system.Publication Untersuchungen zum Herbizidstress in Zuckerrüben mit drei feldtauglichen optischen Sensoren und Methoden der Bildanalyse(2014) Roeb, JohannesWeed management in sugar beets is based on the repeated use of herbicide mixtures after crop emergence. Due to the limited selectivity of active ingredients, herbicide treatments not only control the weeds but will reduce the growth of sugar beets also. Yield losses due to herbicide stress are expected to range between 5-15%. Using optical sensors is a nondestructive method to assess changes in reflection, leaf fluorescence or chlorophyll fluorescence kinetics induced by herbicides. To evaluate the applicability of three optical sensors for assessing herbicide stress and to measure the influence of herbicides and herbicide mixtures on sugar beets, a pot experiment was performed at the University of Hohenheim, Germany. Sugar beets were grown under natural light and temperature conditions and treated with the active ingredients metamitron, phenmedipham, desmedipham, ethofumesate, triflusulfuron-methyl and dimethenamid-P in their commercially available formulation and practical dosage. In total five single herbicides as well as five different herbicide mixtures were applied in the cotyledon stage (EC 10), the two-leaf stage (EC 12) or the four- to six-leaf stage (EC 14/16) of sugar beets. Stress reactions were monitored with three optical sensors: Images of a digital camera (Canon EOS 1000D) were used to determine leaf coverage area, plant shape and leaf color. Measurements were performed about every second day and a growth index had been calculated. A multispectral fluorometer (FORCE-A MULTIPLEX®) was used to detect the blue-green fluorescence, red fluorescence and far-red fluorescence and to calculate fluorescence indices. A portable imaging sensor of chlorophyll fluorescence kinetics (WALZ IMAGING PAM) was used on a daily basis to determine changes in the maximum quantum efficacy (Fv/Fm) induced by herbicide treatments. Four respectively two weeks after the treatment sugar beets were harvested for dry matter analysis. For each of the herbicide treatments and for each of the three application dates five Mitscherlich pots were used for replication. Each pot had about four sugar beet plants. Based on digital imaging it was possible to measure leaf coverage area and determine growth depressions induced by herbicide treatments containing mixtures of the active ingredients phenmedipham, desmedipham and ethofumesate. Herbicide mixtures with more active ingredients increased the stress reaction of sugar beets. Differentiation between untreated plants and sugar beets treated with different herbicides or mixtures was possible a few days after application. Results were correlated with dry matter. Changes in plant shape parameters indicated a delayed development of herbicide treated plants. Higher red content of leaf color was attributed to a relative loss of chlorophyll. Measurements with the FORCE-A MULTIPLEX® fluorometer detected an increase in red and far-red fluorescence but not blue-green fluorescence within 1-2 days after treatments with the aforementioned mixture of active ingredients. About the same trends were found at all application dates. Most fluorescence values were affected by growth stage and leaf area of sugar beets. Thus, although differences between treated and untreated plants were strong, it was not possible to discriminate between stress reactions on different herbicide treatments. Based on the maximum quantum efficacy (Fv/Fm) measured with the WALZ IMAGING-PAM chlorophyll fluorescence sensor previous studies, describing the time course of stress reaction on application of PSII-inhibitors in sugar beets were confirmed. After a strong decrease of Fv/Fm within one day, recovery to the initial value was observed within ten days. Quantification of herbicide stress induced by PSII-inhibitors was possible due to different intensities and durations of the stress reaction. Photochemical stress response to treatments with metamitron or chloridazon was lower than with products containing phenmedipham or desmedipham. Stress reaction on herbicide mixtures not only depended on content of PSII-inhibitors but also on formulation. Weather conditions were more important than the sugar beet development stage considering the stress reaction. Observations from previous studies, indicating an increase in herbicide stress after precipitation and at low temperatures, were also confirmed in this study. Differences in stress reactions of cotyledons and first true leaves can be explained by a higher uptake of herbicides in young tissues. The influence of other herbicides, mixtures, dosages and formulations on herbicide stress in sugar beets has to be further investigated. Moreover the complex interrelations between sugar beet development stage, weather conditions and stress reaction could only be investigated in systematic field trials. For the measurement of stress reactions on herbicides the described optical sensors and methods can be used, each having different advantages and disadvantages.