Repository logo
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
    Communities & Collections
    All of hohPublica
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
  1. Home
  2. Browse by Subject

Browsing by Subject "High gravity"

Type the first few letters and click on the Browse button
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Impact of particle size reduction on high gravity enzymatic hydrolysis of steam-exploded wheat straw
    (2021) Hoppert, Luis; Einfalt, Daniel
    Economically feasible bioethanol production from lignocellulosic biomass requires solid loadings ≥ 15% dry matter (DM, w/w). However, increased solid loadings can lead to process difficulties, which are characterized by high apparent slurry viscosity, insufficient substrate mixing and limited water availability, resulting in reduced final glucose yields. To overcome these limitations, this study focused on enzymatic hydrolysis of 10–35% DM solid loadings with steam-exploded wheat straw in two different particle sizes. At solid loadings of 20 and 25% DM small particle size of ≤ 2.5 mm yielded 16.9 ± 1.1% and 10.2 ± 1.4% increased final glucose concentrations compared to large particle size of 30 ± 20 mm. Small particle size also positively influenced slurry viscosity and, therefore, miscibility. As a key finding of this investigation, high gravity enzymatic hydrolysis with solid loadings of 30–35% DM was indeed successfully employed when wheat straw was applied in small particle size. Here, the highest final glucose yield was achieved with 127.9 ± 4.9 g L⁻¹ at 35% DM solid loading. An increase in the solid loading from 10 to 35% DM in small particle size experiments resulted in a 460% increase in the final glucose concentration.

  • Contact
  • FAQ
  • Cookie settings
  • Imprint/Privacy policy