Browsing by Subject "High-throughput phenotyping"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Publication A comprehensive characterization of agronomic and end-use quality phenotypes across a quinoa world core collection(2023) Craine, Evan B.; Davies, Alathea; Packer, Daniel; Miller, Nathan D.; Schmöckel, Sandra M.; Spalding, Edgar P.; Tester, Mark; Murphy, Kevin M.Quinoa (Chenopodium quinoa Willd.), a pseudocereal with high protein quality originating from the Andean region of South America, has broad genetic variation and adaptability to diverse agroecological conditions, contributing to the potential to serve as a global keystone protein crop in a changing climate. However, the germplasm resources currently available to facilitate quinoa expansion worldwide are restricted to a small portion of quinoa’s total genetic diversity, in part because of day-length sensitivity and issues related to seed sovereignty. This study aimed to characterize phenotypic relationships and variation within a quinoa world core collection. The 360 accessions were planted in a randomized complete block design with four replicates in each of two greenhouses in Pullman, WA during the summer of 2018. Phenological stages, plant height, and inflorescence characteristics were recorded. Seed yield, composition, thousand seed weight, nutritional composition, shape, size, and color were measured using a high-throughput phenotyping pipeline. Considerable variation existed among the germplasm. Crude protein content ranged from 11.24% to 17.81% (fixed at 14% moisture). We found that protein content was negatively correlated with yield and positively correlated with total amino acid content and days to harvest. Mean essential amino acids values met adult daily requirements but not leucine and lysine infant requirements. Yield was positively correlated with thousand seed weight and seed area, and negatively correlated with ash content and days to harvest. The accessions clustered into four groups, with one-group representing useful accessions for long-day breeding programs. The results of this study establish a practical resource for plant breeders to leverage as they strategically develop germplasm in support of the global expansion of quinoa.Publication Integration of hyperspectral, genomic, and agronomic data for early prediction of biomass yield in hybrid rye (Secale cereale L.)(2021) Galán, Rodrigo José; Miedaner, ThomasCurrently, the combination of a growing bioenergy demand and the need to diversify the dominant cultivation of energy maize opens a highly attractive scenario for alternative biomass crops. Rye (Secale cereale L.) stands out for its vigorous growth and increased tolerance to abiotic and biotic stressors. In Germany, less than a quarter of the total harvest is used for food production. Consequently, rye arises as a source of renewables with a reduced bioenergy-food tradeoff, emerging biomass as a new breeding objective. However, rye breeding is mainly driven by grain yield while biomass is destructively evaluated in later selection stages by expensive and time-consuming methods. The overall motivation of this research was to investigate the prospects of combining hyperspectral, genomic, and agronomic data for unlocking the potential of hybrid rye as a dual-purpose crop to meet the increasing demand for renewable sources of energy affordably. A specific aim was to predict the biomass yield as precisely as possible at an early selection stage. For this, a panel of 404 elite rye lines was genotyped and evaluated as testcrosses for grain yield and a subset of 274 genotypes additionally for biomass. Field trials were conducted at four locations in Germany in two years (eight environments). Hyperspectral fingerprints consisted of 400 discrete narrow bands (from 410 to 993 nm) and were collected in two points of time after heading for all hybrids in each site by an uncrewed aerial vehicle. In a first study, population parameters were estimated for different agronomic traits and a total of 23 vegetation indices. Dry matter yield showed significant genetic variation and was stronger correlated with plant height (r_g=0.86) than with grain yield (r_g=0.64) and individual vegetation indices (r_g: =<|0.35|). A multiple linear regression model based on plant height, grain yield, and a subset of vegetation indices surpassed the prediction ability for dry matter yield of models based only on agronomic traits by about 6 %. In a second study, whole-spectrum data was used to indirectly estimate dry matter yield. For this, single-kernel models based on hyperspectral reflectance-derived (HBLUP) and genomic (GBLUP) relationship matrices, a multi-kernel model combining both matrices, and a bivariate model fitted also with plant height as a secondary trait, were considered. HBLUP yielded superior predictive power than the models based on vegetation indices previously tested. The phenotypic correlations between individual wavelengths and dry matter yield were generally significant (p < 0.05) but low (r_p: =< |0.29|). Across environments and training set sizes, the bivariate model yielded the highest prediction abilities (0.56 – 0.75). All models profited from larger training populations. However, if larger training sets cannot be afforded, HBLUP emerged as a promising approach given its higher prediction power on reduced calibration populations compared to the well-established GBLUP. Before its incorporation into prediction models, filtering the hyperspectral data available by the least absolute shrinkage and selection operator (Lasso) was worthwhile to deal with data dimensionally. In a third study, the effects of trait heritability, as well as genetic and environmental relatedness on the prediction ability of GBLUP and HBLUP for biomass-related traits were compared. While the prediction ability of GBLUP (0.14 - 0.28) was largely affected by genetic relatedness and trait heritability, HBLUP was significantly more accurate (0.41 - 0.61) across weakly connected datasets. In this context, dry matter yield could be better predicted (up to 20 %) by a bivariate model. Nevertheless, due to environmental variances, genomic and reflectance-enabled predictions were strongly dependant on a sufficient environmental relationship between data used for model training and validation. In summary, to affordably breed rye as a double-purpose crop to meet the increasing bioenergy demands, the early prediction of biomass across selection cycles is crucial. Hyperspectral imaging has proven to be a suitable tool to select high-yielding biomass genotypes across weakly linked populations. Due to the synergetic effect of combining hyperspectral, genomic, and agronomic traits, higher prediction abilities can be obtained by integrating these data sources into bivariate models.Publication Remote sensing of maize plant height at different growth stages using UAV-based digital surface models (DSM)(2022) Oehme, Leon Hinrich; Reineke, Alice-Jacqueline; Weiß, Thea Mi; Würschum, Tobias; He, Xiongkui; Müller, JoachimPlant height of maize is related to lodging resistance and yield and is highly heritable but also polygenic, and thus is an important trait in maize breeding. Various manual methods exist to determine the plant height of maize, yet they are labor-intensive and time consuming. Therefore, we established digital surface models (DSM) based on RGB-images captured by an unmanned aerial vehicle (UAV) at five different dates throughout the growth period to rapidly estimate plant height of 400 maize genotypes. The UAV-based estimation of plant height (PHUAV) was compared to the manual measurement from the ground to the highest leaf (PHL), to the tip of the manually straightened highest leaf (PHS) and, on the final date, to the top of the tassel (PHT). The best results were obtained for estimating both PHL (0.44 ≤ R2 ≤ 0.51) and PHS (0.50 ≤ R2 ≤ 0.61) from 39 to 68 days after sowing (DAS). After calibration the mean absolute percentage error (MAPE) between PHUAV and PHS was in a range from 12.07% to 19.62%. It is recommended to apply UAV-based maize height estimation from 0.2 m average plant height to maturity before the plants start to senesce and change the leaf color.Publication UAV remote sensing for high-throughput phenotyping and for yield prediction of Miscanthus by machine learning techniques(2022) Impollonia, Giorgio; Croci, Michele; Ferrarini, Andrea; Brook, Jason; Martani, Enrico; Blandinières, Henri; Marcone, Andrea; Awty-Carroll, Danny; Ashman, Chris; Kam, Jason; Kiesel, Andreas; Trindade, Luisa M.; Boschetti, Mirco; Clifton-Brown, John; Amaducci, StefanoMiscanthus holds a great potential in the frame of the bioeconomy, and yield prediction can help improve Miscanthus’ logistic supply chain. Breeding programs in several countries are attempting to produce high-yielding Miscanthus hybrids better adapted to different climates and end-uses. Multispectral images acquired from unmanned aerial vehicles (UAVs) in Italy and in the UK in 2021 and 2022 were used to investigate the feasibility of high-throughput phenotyping (HTP) of novel Miscanthus hybrids for yield prediction and crop traits estimation. An intercalibration procedure was performed using simulated data from the PROSAIL model to link vegetation indices (VIs) derived from two different multispectral sensors. The random forest algorithm estimated with good accuracy yield traits (light interception, plant height, green leaf biomass, and standing biomass) using 15 VIs time series, and predicted yield using peak descriptors derived from these VIs time series with root mean square error of 2.3 Mg DM ha−1. The study demonstrates the potential of UAVs’ multispectral images in HTP applications and in yield prediction, providing important information needed to increase sustainable biomass production.