Browsing by Subject "Humulon"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Publication Resistenz von Hopfen, Humulus lupulus L., gegen die Hopfenblattlaus, Phorodon humuli (Schrank)(2010) Kryvynets, Oleg; Zebitz, Claus P. W.Non-chemical methods controlling the damson-hop aphid, Phorodon humuli (Schrank) have recently gained importance, due to its great economical relevance and increasing problems with its chemical control. Breeding for the classic 'Genetically controlled resistance', where the plant exerts negative influence on the pest's behaviour during feeding, in this case appears as the only promising method because so far no other efficient biological control methods are available. In order to analyse the host-parasite relationship between hop and damson-hop aphid, and to provide a reliable, standardised screening method based on line-specific host selection behaviour, 1. the composition of the aphid's food, 2. hardness of hop tissue, 3. host selection behaviour and 4. parameters of aphid growth and development were investigated. In the apoplast (Intercellular washing fluid) of leaves and cones from all hop lines resveratrol was found, which also indicates an accumulation of its glycosidic form in the plant tissue. In contrast, no resveratrol could be found in samples of non-transgenic hop. An analysis for bitter acids detected alpha- and beta-acids in the cones only, not however in the intercellular space of the leaves. In a comparative study of plant tissues the contents of lupulones in leaf extracts from transgenic plants (except Tk160 and Tk424) was lower, the contents of humulones higher compared with those from non-transgenic plants. Generally leaf extracts showed higher contents of alpha- than of beta-acids. Resveratrol was not found in any of the leaf- or cone-extracts. Tissue hardness differed between transgenic and non-transgenic plants as well as between those from the glasshouse and from open land. In the field-grown plants it was definitely higher. Leaves of transgenic lines were harder than those of non-transgenic ones. This difference was pronounced particularly in young leaves. Significant differences were observed among parameters of aphid growth and development. The individual transgenic lines exert significantly different influence on P. humuli in respect of relative growth rate of individuals, rate of population increase and fecundity. There was no significant difference between the variants regarding the parameters rDS-value, life span and number of embryos. Host selection behaviour was different on transgenic versus non-transgenic plants. On leaves of transgenic plants a slowing down of food intake from the phloem and an extension of water intake from the xylem were observed. On the cones no similar effect ? general reduction or extension of intake from phloem or xylem in comparison to non-transgenic plants ? could be ascertained. Generally a strong decrease in food intake from the phloem of cones compared to that of the leaves was observed, caused by frequent phases of aphid inactivity on cones. Aphid behaviour on artificial diets was definitely influenced by different concentrations of bitter acids and resveratrol. A gradual increase in bitter acid concentration first prolonged or raised some EPG-parameters and then shortened or reduced them subsequently. This means that the aphids first reacted negatively, from a certain concentration of bitter acids on, however, positively to these substances. A raise in resveratrol concentrations led in the whole course either to a notable increase or decrease of values for the individual EPG-parameters. This suggests a xenobiotic resistance effected by this substance. Correlations between the experimental data showed the following dependencies: The humulones and lupulones found in intercellular washing fluid and in tissue extracts influence EPG-parameters that indicate factors located in the mesophyll. The duration of those phases of the penetration that take place in the intercellular space is reduced with increasing concentrations of humulones and lupulones. Food quality and quantity in plants from the glasshouse had no negative effects on the damson-hop aphid. On field-grown plants different effects of alpha- and beta-acids in the extracts on the aphids were ascertained. The contents of lupulones in cone- and leaf-extracts exerted a more inhibiting, the humulones a more promotional effect on the aphids during feeding. As with the overall contents of humulone and lupulone a different influence of individual bitter acids on aphid behaviour was recognisable in EPG-parameters. On cones the strong behaviour modification by the examined substances took effect on the mesophyll level and in the phloem. Positive correlations between the adult weight of the aphids as well as the amount of offspring per life span per insect and the bitter acid contents indicate an influence in favour of the insect. Negative correlations between the rm -value and the bitter acid contents, however, show an influence on the aphids in favour of the plant. Higher bitter acid concentrations reduce the development rate of aphid populations. Notable differences between transgenic and non-transgenic plants as well as varying effects of examined substances on the aphids, partly favourable for the plant, partly favourable for the pest, were found. These differences were partially clarified by comparing the effects of the substances when administered with artificial diets. The exact mode of action of resveratrol and its derivatives in transgenic hop lines on the damson-hop aphid requires further examination. A direct toxic effect on the aphids is very probable. As a conclusion from the clustering by examined parameters the transgenic hop line Tk424 can be designated as optimal.