Browsing by Subject "Krieger-Dougherty"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Publication Macroscopic rheology of non-Brownian suspensions at high shear rates: the influence of solid volume fraction and non-Newtonian behaviour of the liquid phase(2021) Wilms, Patrick; Hinrichs, Jörg; Kohlus, ReinhardModelling the macroscopic rheology of non-Brownian suspensions is complicated by the non-linear behaviour that originates from the interaction between solid particles and the liquid phase. In this contribution, a model is presented that describes suspension rheology as a function of solid volume fraction and shear rate dependency of both the liquid phase, as well as the suspension as a whole. It is experimentally validated using rotational rheometry ( ≤ 0.40) and capillary rheometry (0.55 ≤ ≤ 0.60) at shear rates > 50 s−1. A modified Krieger-Dougherty relation was used to describe the influence of solid volume fraction on the consistency coefficient, , and was fitted to suspensions with a shear thinning liquid phase, i.e. having a flow index, , of 0.50. With the calculated fit parameters, it was possible to predict the consistency coefficients of suspensions with a large variation in the shear rate dependency of the liquid phase ( = 0.20–1.00). With increasing solid volume fraction, the flow indices of the suspensions were found to decrease for Newtonian and mildly shear thinning liquid phases ( ≥0.50), whereas they were found to increase for strongly shear thinning liquid phases ( ≤0.27). It is hypothesized that this is related to interparticle friction and the relative contribution of friction forces to the viscosity of the suspension. The proposed model is a step towards the prediction of the flow curves of concentrated suspensions with non-Newtonian liquid phases at high shear rates.