Browsing by Subject "Lidar"
Now showing 1 - 12 of 12
Results Per Page
Sort Options
Publication 10 W-Average-Power Single-Frequency Ti:sapphire Laser with Tuning Agility – A Breakthrough in High-Resolution 3D Water-Vapor Measurement(2018) Metzendorf, Simon; Wulfmeyer, VolkerThe differential absorption lidar (DIAL) technique is well suited for measuring the humidity field of the atmosphere with high spatial and temporal resolution as well as accuracy. The water-vapor DIAL of the University of Hohenheim is a mobile, ground-based, scanning system. The DIAL methodology and the application in the Hohenheim-DIAL impose stringent requirements on the laser transmitter. In this thesis, a new laser transmitter was realized and employed. It is a pulsed, actively frequency-stabilized titanium-sapphire laser system, pumped with a Nd:YAG master-oscillator power-amplifier (MOPA) and alternately seeded by two diode lasers. As pump source, two commercially custom-made, diode-pumped, Q-switched, and frequency-doubled Nd:YAG lasers in MOPA architecture were employed. The relevant properties for pumping the Ti:sapphire laser were studied. The second Nd:YAG MOPA provides a considerably higher average output power (up to P = 63 W at 532 nm, or a pulse energy of up to E = 210 mJ at a repetition rate of f = 300 Hz) and an almost ideal top-hat beam profile. Thus, efficient end-pumping of the Ti:sapphire crystal was enabled without any optical damage. The components for injection seeding of the titanium-sapphire laser, making narrowband operation at two alternating frequencies (online and offline) possible, were substantially improved. Now, advanced commercial external-cavity diode lasers (ECDL) are applied. With an analog regulation signal of a wavelength meter, the frequency of an ECDL can be stabilized precisely to a defined value (standard deviation < 1 MHz). Optionally, the frequency can be tuned according to various mathematical functions. The online-offline-switching is accomplished with a fiber switch. The crosstalk is extraordinarily low (< -61 dB), the switching time sufficiently short (~ 1.5 ms), and the spatial overlap of the signals, due to the waveguide, almost perfect. The power of the seeders in front of the resonator is more than sufficient, 17-20 mW. The Ti:sapphire laser consists of a ring resonator with four mirrors in a bow-tie layout. With adequate components, the operation wavelength at 818 nm is pre-selected and unidirectional propagation is ensured. The laser crystal is installed in an in-house-manufactured cooling mount, of which two designs were utilized and compared. The gain-switched Ti:sapphire laser was developed to operate in a dynamically stable state of the thermal lens, which arises in the crystal at high powers. To this end, the resonator was theoretically analyzed beforehand and the focal length of the thermal lens measured. The implementation of a cylindrical lens compensates the stronger contraction of the eigenmode in the tangential plane. By these means, a stable operation with an average output power of P = 10 W (corresponding to E = 33.3 mJ at f = 300 Hz; pulse duration ~ 30 ns) was realized. With a modified configuration of the cylindrical lens a maximum output power of P_max = 11.8 W (E_max = 39.3 mJ) was achieved. These values are the highest which were obtained so far for a laser of this kind, i.e., a laser transmitter whose power originates from a single radiation source (without further amplification or conversion). The laser cavity is actively stabilized to the frequency of the seeder, following a Pound-Drever-Hall technique. This yields permanent single-frequency operation with very high frequency stability (standard deviation < 2 MHz) and a narrow linewidth (< 63 MHz). These results correspond to the resolution limit of the characterizing wavelength meter. Laser emission occurs in the fundamental transverse mode, TEM_00 (M² <= 1.06). The laser system of the Hohenheim-DIAL has been successfully operated on several field campaigns. Its robustness has been demonstrated, for instance, during an uninterrupted operation for over 30 hours and an overseas transport to the USA which the system endured without damage. This work presents a vertical pointing and two scanning water-vapor DIAL measurements, confirming a high resolution and accuracy. The vertical measurement was executed for the first time at 10 W laser operation. Furthermore, two special DIAL measurements are discussed: The measurements on a strongly backscattering target demonstrate a high spectral purity >= 99.97% of the laser transmitter. Finally, an atmospheric measurement with a tuning online wavelength shows the frequency-agility of the laser and allows to determine the water-vapor absorption line experimentally. The comparison with the spectrum of a database shows a very good agreement (~ 5-10 % deviation in the absorption cross sections absolute value).Publication 3-D observations of absolute humidity from the land surface to the lower troposphere with scanning differential absorption lidar(2016) Späth, Florian Heiko; Wulfmeyer, VolkerThe water vapor (WV) distribution in the atmospheric boundary layer (ABL) is spatially and temporally highly variable. To investigate this behavior, the Institute of Physics and Meteorology at the University of Hohenheim (UHOH) developed a unique scanning differential absorption lidar (DIAL). This instrument allows for water vapor measurements with high temporal and spatial resolutions of the orders of seconds and tens of meters in the range of several kilometers from the surface up to the lower troposphere. Additionally, the UHOH DIAL system can perform scanning measurements which allows for observations down to the surface as well as for observations of the horizontal moisture variability. Within this thesis, three aspects regarding high-resolution observations of moisture in the ABL with scanning DIAL are demonstrated: 1) the development of a new seeder system for the laser transmitter, 2) the presentation of three scan modes, and 3) applications of 2-D to 3-D WV DIAL data. The newly developed seeder system is based on distributed feedback (DFB) laser diodes as seed lasers and an electro-optical deflector as optical switch. The setup and its specifications are presented. Scanning measurements were performed to capture the spatial WV structures. For this purpose, three scan modes with measurement examples are presented: 1) Range-height indicator (RHI) scans provide vertical cross-section images of the atmospheric humidity distribution. The presented series of four measurements show several humidity layers with different WV content and their evolution. Clouds appear in the last scan. 2) A volume scan captures the whole three-dimensional WV structure made out of several conical scans of different elevation angles. The horizontal variation of the layer heights can be related to the terrain profile with a small hill near the DIAL site. 3) Low elevation scans observe the WV distribution directly above the surface. Thus, relationships of the ground characteristics and vegetation with the humidity content above can be investigated. It is shown that there was more moisture above a maize field and above a forest than above grassland. For the analysis of scanning measurements, new analysis and visualization routines as well as new methods for the error estimation were developed. More scientific applications of high-resolution WV data from DIAL measurements are presented in three publications. A evaluation study compared humidity profiles from model simulations with different land-surface schemes with horizontal mean profiles of scanning DIAL measurements. High-resolution humidity fluctuations from vertical measurements were used to determine higher-order moments up to the fourth-order as well as skewness and kurtosis. Furthermore, such WV profiles were combined with profiles of temperature and vertical wind velocities and used for the development of new turbulence parameterizations and for model validation.Publication A backscatter lidar forward operator for aerosol-representing atmospheric chemistry models(2020) Geisinger, Armin; Wulfmeyer, VolkerState-of-the-art atmospheric chemistry models are capable of simulating the transport and evolution of aerosols and trace gases but there is a lack of reliable methods for model validation and data assimilation. Networks of automated ceilometer lidars (ACLs) could be used to fill this gap. These networks are already used for the detection of clouds and aerosols, providing a 3D dataset of atmospheric backscatter profiles. But as the aerosol number concentration cannot be obtained from the ACL data alone; one needs a backscatter-lidar forward model to simulate lidar profiles from the model variables. Such an operator allows then for a qualitative and quantitative model validation based on ACL data. In this work, a newly developed backscatter-lidar forward operator and the related sensitivity studies are presented and results of the forward operator applied on model output data are compared to measured ACL profiles in the frame of a case study. As case study, the eruption of the Icelandic volcano Eyjafjallajökull in 2010 was chosen and extensively analyzed. The Consortium for Small-scale Modeling - Aerosols and Reactive Trace gases (COSMO-ART) model of DWD (Deutscher Wetterdienst) was operated during this event for ash-transport simulations over Europe. For the forward model, the attenuated backscatter coefficient is used as lidar-independent variable, which only relies on the laser wavelength. To calculate the attenuated backscatter coefficient, the size-dependent aerosol number concentration and the scattering properties of each aerosol type and size have to be simulated. While the aerosol number concentration is a model output variable, the scattering properties were determined by extensive scattering calculations. As these scattering calculations require assumptions about the aerosol refractive indices and shapes, sensitivity studies were performed to estimate the uncertainties related to the particle properties as represented by the model system. An analysis of the particle shape effect for the extinction and backscatter coefficients resulted in huge differences of the scattering properties between spherical, ellipsoidal and cylindrical particle shapes. Due to a particle shape mixture in typical volcanic ash plumes, the application of non-spherical scattering calculation methods for estimating the effective optical properties requires more information related to the particle shape distribution (specifically: a particle size and shape distribution). As such information was not available for the present case study, it was necessary to assume spherical shaped volcanic ash particles but estimate the uncertainty related to this assumption within the frame of additional sensitivity studies. Finally, the forward modeled lidar profiles were compared to ACL measurements from stations of the German ACL network. The comparison required an extraction of common time and height intervals of the ACL and forward modeled COMSO-ART data as well as reshaping the datasets to the same vertical and temporal resolution. Significant differences between ACL profiles and the output of the forward operator applied to the COSMO-ART data were found. Some ash layer structures were at similar coordinates which is remarkable due to the uncertainties related to the model dynamics and the limited amount of measurement data that could be used for model validation. In detail, however, the major fraction of the compared time and height interval differed both in the relative signal intensity and the layer structures of the volcanic ash plume. Based on such quantitative comparison, a future data assimilation system could correct the model prediction of the forward modeled attenuated backscatter coefficient, the time of arrival, as well as the vertical structure of the volcanic ash plume. In summary, the continuous and distributed data stream provided by ACL stations was found to deliver valuable verification information for dispersion simulations of aerosol events. But major issues have been determined which limit current realizations of backscatter-lidar forward operators for aerosol transport simulations: First, it is suggested that the ACL systems improve their dynamic range and perform automatic calibration to increase the precision of ACL data and for calculating the measured attenuated backscatter coefficient with a minimum leftover of uncertainties. This will allow for the calculation of the attenuated backscatter coefficient in the presence of clouds as well as of faint aerosol signals. Second, the aerosols scattering properties have to be analyzed even more extensively which includes both the variety of aerosol sizes or types as well as the size distribution information. From the findings within this study, the particle size distribution was indentified to be a critical component when using monodisperse size classes.Publication A mobile, scanning eye-safe lidar for the study of atmospheric aerosol particles and transport processes in the lower troposphere(2009) Pal, Sandip; Wulfmeyer, VolkerA high-power eye-safe scanning aerosol lidar system in the ultraviolet wavelength region is introduced for the study of the optical properties of aerosol particles and transport processes in the atmosphere, especially in the atmospheric boundary layer (ABL). This system operates with an average power of 9 W in combination with a 40-cm scanner with a speed of up to 10° s-1. A modified version of the lidar inversion algorithm is developed for the retrieval of optical properties of aerosols from scanning lidar measurements. The lidar data can be analyzed with previously unachieved temporal and spatial resolution of 0.03 s and 3 m, respectively.Publication A scanning eye-safe rotational Raman lidar in the ultraviolet for measurements of tropospheric temperature fields(2009) Radlach, Marcus; Wulfmeyer, VolkerWithin the frame of the virtual Institute COSI-TRACKS the first scanning rotational Raman lidar has been developed and deployed successfully in two large field campaigns. This has allowed new investigations of the convective boundary layer and contributed to studies on the initiation of convection during the PRINCE campaign (PRediction, Identification and trackiNg of Convective cElls) in July 2006 and the COPS experiment (Convective and Orographically-induced Precipitation Study) from June to August 2007. The University of Hohenheim rotational Raman lidar was deployed in both these campaigns on Hornisgrinde (48.61 °N, 8.20 °E, 1161 m above sea level), the highest peak in the Northern Black Forest in southwest Germany. The lidar provides measurements of atmospheric temperature fields in the troposphere with high spatial and temporal resolution at day and night. Daytime scanning temperature measurements within a range of 3 km using a temporal resolution of 169 s and a moving average of 300 m in range show statistical temperature uncertainties of less than 1 K while pointing at 21 directions. Temperature uncertainties of less than 1 K are achieved during nighttime up to a range of 8 km using a temporal resolution of 3 minutes and a range resolution of 300 m. The lidar resolves also turbulence in the convective boundary layer, e.g., at 470 m height with a temporal resolution of 10 s and statistical uncertainties of only 0.41 K. In addition to temperature, also the particle backscatter coefficient and the particle extinction coefficient are measured independently. The instrument operates with a primary wavelength of 355 nm. This has instrumental advantages compared to 532 nm but also yields eye-safety beyond a range of 500 m which facilitates the deployment. Highly efficient spectral separation of the atmospheric backscatter signals is performed by a polychromator with narrow-band interference filters in a sequential setup. The spectral characteristics of these filters were optimized with respect to high measurement performance in the daytime planetary boundary layer and the lower free troposphere. Pioneering measurements of the 2-dimensional temperature distribution in the lower troposphere in the vicinity of a mountain ridge are presented.Publication Aircraft air data system based on the measurement of Raman and elastic backscatter via active optical remote-sensing(2012) Fraczek, Michael Darius; Wulfmeyer, VolkerFlight safety in all weather conditions demands exact and reliable determination of flight-critical air parameters. Conventional aircraft air data systems can be impacted by probe failure caused by mechanical damage or impairment due to different environmental influences. In this thesis, a novel measurement concept for optically measuring the air temperature, density, pressure, moisture and particle backscatter for aircrafts is presented. The detection of volcanic ash is possible as well. This concept is independent from assumptions about the atmospheric state and eliminates the drawbacks of conventional aircraft probes. The measurement principle is based on a laser emitting pulses into the atmosphere from inside the aircraft and a receiver detecting the light signals backscattered from a defined region just outside the disturbed area of the fuselage air flow. With four receiver channels, different spectral portions of the Raman backscatter of dry air and water vapor, as well as the elastic backscatter are extracted. Measurements at daytime and in any atmospheric condition, including very dense clouds, are possible. In the framework of this thesis, a first laboratory prototype of such a measurement system using 532 nm laser radiation was developed, comprising all relevant theoretical and experimental studies. These were notably the comparative feasibility assessment of the measurement methodology, the computational modeling of the measurement concept, the laboratory setup and the experimental validation. Detailed and realistic performance and optimization calculations were made based on the parameters of the first prototype. The impact and the correction of systematic errors due to solar background and elastic signal cross-talk appearing in optically dense clouds were analyzed in computational simulations. The simulations supplement the experimental results for measurement scenarios that are not generable in the laboratory. The laboratory experiments validate the predictions from the simulations with regard to systematic errors and statistical measurement uncertainties. Where possible, the experimental setup and the signal and data analysis were optimized. Residual differences between the experimental and the model results were analyzed in detail. Concrete further hardware optimizations were suggested. The resulting experimental systematic measurement errors at air temperatures varying from 238 K to 308 K under constant air pressure are < 0.05 K, < 0.07 % and < 0.06 % for temperature, density and pressure, respectively. The systematic errors for measurements at air pressures varying from 200 hPa to 950 hPa under constant air temperature are < 0.22 K, < 0.36 % and < 0.31 %, respectively. The experimentally achieved 1-σ statistical measurement uncertainties for the analysis of each single detected signal pulse range from 0.75 K to 2.63 K for temperature, from 0.43 % to 1.21 % for density, and from 0.51 % to 1.50 % for pressure, respectively, for measurement altitudes from 0 m to 13400 m. In order to meet measurement error requirements specified in aviation standards, minimum laser pulse energies were experimentally determined to be used with the designed measurement system. With regard to 100-pulse-averaged temperature measurements, the pulse energy at 532 nm has to be larger than 11 mJ (35 mJ), when regarding 1-σ (3-σ) uncertainties at all measurement altitudes. For 100-pulse-averaged pressure measurements, the laser pulse energy has to be respectively larger than 95 mJ (355 mJ). Based on these experimental results, the laser pulse energy requirements were extrapolated to the ultraviolet wavelength region as well, resulting in much lower laser pulse energy demand. The successful results of this thesis do not only prove the viability of the concept implementation, but also demonstrate its high potential for aircraft air data system application.Publication Assimilation of ground-based and airborne lidar data into the MM5 4D-Var system(2010) Grzeschik, Matthias; Wulfmeyer, VolkerThis work investigates the impact of assimilating water vapor Light Detection and Ranging (lidar) data into mesoscale Numerical Weather Prediction (NWP) models. Two cases from the field campaigns International H20 Project 2002 (IHOP_2002) and International Lindenberg Campaign for Assessment of Humidity- and Cloud-Profiling Systems and its Impact on High-Resolution Modelling 2005 (LAUNCH-2005) are presented. In the first case, airborne water vapor Differential Absorption Lidar (DIAL) data are used for an assimilation for 24 May 2002, where convection occurred along an eastward moving dryline in western Texas and Oklahoma south of a triple point that formed in western Oklahoma. In the second case, a network of three ground based water vapor Raman lidars, operated behind a sharp frontal rain band with a northwesterly flow, are used. The method employed, Four-Dimensional Variational Data Assimilation (4D-Var), is described in relation to other methods and the implementation is given in detail. The data assimilation results in a large modification of the initial fields. The assimilation into the preconvective conditions changed not only the water vapor field but also the location of convergence lines, causing positive modification of Convective Initiation (CI). In the LAUNCH-2005 case a strong correction of the vertical structure and the absolute values of the initial water-vapor field of the order of 1g/kg was found. This occurred mainly upstream of the lidar systems within an area that was comparable with the domain covered by the lidar systems. The correction of the water-vapor field was validated using independent Global Positioning System (GPS) sensors. Much better agreement with GPS zenith wet path delay was achieved with the initial water-vapor field after 4D-Var. Furthermore, the impact of the assimilation and its temporal evolution was investigated with introduced measures. The results demonstrate the high value of accurate vertically resolved mesoscale water vapor observations and advanced data assimilation systems for short-range weather forecasting.Publication Convective-scale data assimilation of thermodynamic lidar data into the weather research and forecasting model(2022) Thundathil, Rohith Muraleedharan; Wulfmeyer, VolkerThis thesis studies the impact of assimilating temperature and humidity profiles from ground-based lidar systems and demonstrates its value for future short-range forecast. Thermodynamic profile obtained from the temperature Raman lidar and the water-vapour differential absorption lidar of the University of Hohenheim during the High Definition of Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) project Observation Prototype Experiment (HOPE) are assimilated into the Weather Research and Forecasting model Data Assimilation (WRFDA) system by means of a new forward operator. The impact study assimilating the high-resolution thermodynamic lidar data was conducted using variational and ensemble-based data assimilation methods. The first part of the thesis describes the development of the thermodynamic lidar operator and its implementation through a deterministic DA impact study. The operator facilitates the direct assimilation of water vapour mixing ratio (WVMR), a prognostic variable in the WRF model, without conversion to relative humidity. Undesirable cross sensitivities to temperature are avoided here so that the complete information content of the observation with respect to the water vapour is provided. The assimilation experiments were performed with the three-dimensional variational (3DVAR) DA system with a rapid update cycle (RUC) with hourly frequency over ten hours. The DA experiments with the new operator outperformed the previously used relative humidity operator, and the overall humidity and temperature analyses improved. The simultaneous assimilation of temperature and WVMR resulted in a degradation of the temperature analysis compared to the improvement observed in the sole temperature assimilation experiment. The static background error covariance matrix (B) in the 3DVAR was identified as the reason behind this behaviour. The correlation between the temperature and WVMR variables in the background error covariance matrix of the 3DVAR, which is static and not flow-dependent, limited the improvement in temperature. The second part of the thesis provides a solution for overcoming the static B matrix issue. A hybrid, ensemble-based approach was applied using the Ensemble Transform Kalman Filter (ETKF) and the 3DVAR to add flow dependency to the B matrix. The hybrid experiment resulted in a 50% lower temperature and water vapour root mean square error (RMSE) than the 3DVAR experiment. Comparisons against independent radiosonde observations showed a reduction of RMSE by 26% for water vapour and 38% for temperature. The planetary boundary layer (PBL) height of the analyses also showed an improvement compared to the available ceilometer. The impact of assimilating a single lidar vertical profile spreads over a 100 km radius, which is promising for future assimilation of water vapour and temperature data from operational lidar networks for short-range weather forecasting. A forecast improvement was observed for 7 hours lead time compared with the ceilometer derived planetary boundary layer height observations and 4 hours with Global Navigation Satellite System (GNSS) derived integrated water vapour observations. With the help of sophisticated DA systems and a robust network of lidar systems, the thesis throws light on the future of short-range operational forecasting.Publication Development of an eye-safe solid-state tunable laser transmitter around 1.45 my m based on Cr 4+:YAG crystal for lidar applications(2008) Petrova-Mayor, Anna; Wulfmeyer, VolkerA gain switched tunable Cr4+:YAG laser was developed using a Q-switched flashlamp?pumped Nd:YAG pump laser at 10 Hz. A vacuum spatial filter (VSF) was designed in order to filter the ?hot spots? of the pump beam profile. As a result of applying the VSF, a nearly Gaussian-shaped beam profile was achieved which enabled safe pumping of the Cr4+:YAG crystal with pulse energies in excess of 100 mJ. An extensive experimental optimization of the efficiency of the wavelength converter was performed. A maximum output energy of ~7 mJ at 1430?1450 nm, corresponding to ~7% conversion efficiency (with regard to absorbed pump energy), and a pulse duration of 30?35 ns were obtained with a 25-cm-long stable resonator. Tunability in the range 1350?1500 nm and spectral linewidth of ~200G Hz were demonstrated using a 3-plate birefringent filter. The laser was multimode with a flat-top profile and sufficiently good M2~4. The performance and size of the laser are acceptable for use in a laboratory based non-scanning lidar system if a narrow-band birefringent filter is installed. In order to employ a scanning mobile lidar, high pulse frequency (>100 Hz) of the pump laser for the Cr4+:YAG laser is required. The tunability permits the improvement of the laser transmitter for water-vapor DIAL measurements at on-line wavelengths of approximately 1459 nm or 1484 nm if injection-seeding is applied.Publication High-resolution measurements of temperature and humidity fields in the atmospheric boundary layer with scanning rotational Raman lidar(2016) Hammann, Eva; Wulfmeyer, VolkerThe Institute of Physics and Meteorology of the University of Hohenheim (UHOH) operates a scanning rotational Raman lidar (RRL) for high-resolution temperature and water vapor measurements. The measurement performance of the RRL was improved in several aspects. The statistical error of temperature measurements was reduced by up to 70% through optimization of the filter passbands for various solar background conditions. The optimization method, based on detailed simulations, was written for one specific wavelength and was not applicable to other Raman lidar systems. Therefore the simulation results were parametrized in respect to temperature and background level and expressed in units of wavenumbers. A new interference filter transmitting rotational Raman lines near the excitation wavelength was installed, resulting in a higher transmission and eliminating possible leakage signal. A detection channel for the vibrational Raman line of water vapor was added for the retrieval of water vapor mixing ratios during day-and nighttime. More than 300 hours of temperature and more than 200 hours of water vapor measurements were performed and the acquired profiles used in several publications. Atmospheric variance and higher order moment profiles of the daytime atmospheric boundary layer were derived.Publication Perception for context awareness of agricultural robots(2018) Reiser, David; Griepentrog, HansContext awareness is one key point for the realisation of robust autonomous systems in unstructured environments like agriculture. Robots need a precise description of their environment so that tasks could be planned and executed correctly. When using a robot system in a controlled, not changing environment, the programmer maybe could model all possible circumstances to get the system reliable. However, the situation gets more complex when the environment and the objects are changing their shape, position or behaviour. Perception for context awareness in agriculture means to detect and classify objects of interest in the environment correctly and react to them. The aim of this cumulative dissertation was to apply different strategies to increase context awareness with perception in mobile robots in agriculture. The objectives of this thesis were to address five aspects of environment perception: (I) test static local sensor communication with a mobile vehicle, (II) detect unstructured objects in a controlled environment, (III) describe the influence of growth stage to algorithm outcomes, (IV) use the gained sensor information to detect single plants and (V) improve the robustness of algorithms under noisy conditions. First, the communication between a static Wireless Sensor Network and a mobile robot was investigated. The wireless sensor nodes were able to send local data from sensors attached to the systems. The sensors were placed in a vineyard and the robot followed automatically the row structure to receive the data. It was possible to localize the single nodes just with the exact robot position and the attenuation model of the received signal strength with triangulation. The precision was 0.6 m and more precise than a provided differential global navigation satellite system signal. The second research area focused on the detection of unstructured objects in point clouds. Therefore, a low-cost sonar sensor was attached to a 3D-frame with millimetre level accuracy to exactly localize the sensor position. With the sensor position and the sensor reading, a 3D point cloud was created. In the workspace, 10 individual plant species were placed. They could be detected automatically with an accuracy of 2.7 cm. An attached valve was able to spray these specific plant positions, which resulted in a liquid saving of 72%, compared to a conventional spraying method, covering the whole crop row area. As plants are dynamic objects, the third objective of describing the plant growth with adequate sensor data, was important to characterise the unstructured agriculture domain. For revering and testing algorithms to the same data, maize rows were planted in a greenhouse. The exact positions of all plants were measured with a total station. Then a robot vehicle was guided through the crop rows and the data of attached sensors were recorded. With the help of the total station, it was possible to track down the vehicle position and to refer all data to the same coordinate frame. The data recording was performed over 7 times over a period of 6 weeks. This created datasets could afterwards be used to assess different algorithms and to test them against different growth changes of the plants. It could be shown that a basic RANSAC line following algorithm could not perform correctly under all growth stages without additional filtering. The fourth paper used this created datasets to search for single plants with a sensor normally used for obstacle avoidance. One tilted laser scanner was used with the exact robot position to create 3D point clouds, where two different methods for single plant detection were applied. Both methods used the spacing to detect single plants. The second method used the fixed plant spacing and row beginning, to resolve the plant positions iteratively. The first method reached detection rates of 73.7% and a root mean square error of 3.6 cm. The iterative second method reached a detection rate of 100% with an accuracy of 2.6 - 3.0 cm. For assessing the robustness of the plant detection, an algorithm was used to detect the plant positions in six different growth stages of the given datasets. A graph-cut based algorithm was used, what improved the results for single plant detection. As the algorithm was not sensitive against overlaying and noisy point clouds, a detection rate of 100% was realised, with an accuracy for the estimated height of the plants with 1.55 cm. The stem position was resolved with an accuracy of 2.05 cm. This thesis showed up different methods of perception for context awareness, which could help to improve the robustness of robots in agriculture. When the objects in the environment are known, it could be possible to react and interact smarter with the environment as it is the case in agricultural robotics. Especially the detection of single plants before the robot reaches them could help to improve the navigation and interaction of agricultural robots.Publication Theoretical analysis and design of high-performance frequency converters for LIDAR systems(2009) Wagner, Gerd; Wulfmeyer, VolkerFrequency converters based on parametric and nonparametric frequency conversion are analyzed with respect to the specifications for high-average power water-vapor DIAL transmitters (DIAL: Differential Absorption LIDAR; LIDAR: Light Detection and Ranging). A Ti:Sapphire laser was selected as a suitable frequency converter to fulfill simultaneously all the requirements in the wavelength range of 935 nm and 820 nm. As thermal effects have a decisive influence on the overall performance and laser resonator design, they were simulated on Ti:Sapphire laser crystals in detail for different crystals, pump, and cooling configurations using finite element analysis (FEA). The performance and spectral properties of the Ti:Sapphire laser transmitter were modeled with a rate-equation approach for stable and unstable resonators. First theoretical results of an end-pumped Ti:Sapphire laser based on an optimized, asymmetric confocal unstable ring resonator design are presented. The obtained results can especially be used for the further development of a Ti:Sapphire laser to serve as a demonstrator for a future space-borne DIAL system transmitter according to the WALES (Water Vapor Lidar Experiment in Space) specifications. Furthermore, the adaptation of the developed theory modules to other lasing materials and configurations is straightforward.