Browsing by Subject "Liming"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Inter-microbial competition for N and plant NO3− uptake rather than BNI determines soil net nitrification under intensively managed Brachiaria humidicola(2021) Egenolf, Konrad; Schad, Philipp; Arevalo, Ashly; Villegas, Daniel; Arango, Jacobo; Karwat, Hannes; Cadisch, Georg; Rasche, FrankBrachiaria humidicola (syn. Urochloa humidicola) has been acknowledged to control soil nitrification through release of nitrification inhibitors (NI), a phenomenon conceptualized as biological nitrification inhibition (BNI). Liming and N fertilization as features of agricultural intensification may suppress BNI performance, due to a decrease in NI exudation, increased NH3 availability and promotion of ammonia oxidizing bacteria (AOB) over archaea (AOA). A 2-year three-factorial pot trial was conducted to investigate the influence of soil pH and soil microbial background (ratio of archaea to bacteria) on BNI performance of B. humidicola. The study verified the capacity of B. humidicola to reduce net nitrification rates by 50 to 85% compared to the non-planted control, irrespective of soil pH and microbial background. The reduction of net nitrification, however, was largely dependent on microbial N immobilization and efficient plant N uptake. A reduction of gross nitrification could not be confirmed for the AOA dominated soil, but possibly contributed to reduced net nitrification rates in the AOB-dominated soil. However, this putative reduction of gross nitrification was attributed to plant-facilitated inter-microbial competition between bacterial heterotrophs and nitrifiers rather than BNI. It was concluded that BNI may play a dominant role in extensive B. humidicola pasture systems, while N immobilization and efficient plant N uptake may display the dominant factors controlling net nitrification rates under intensively managed B. humidicola.Publication Long-term trends in yield variance of temperate managed grassland(2023) Macholdt, Janna; Hadasch, Steffen; Macdonald, Andrew; Perryman, Sarah; Piepho, Hans-Peter; Scott, Tony; Styczen, Merete Elisabeth; Storkey, Jonathan; Macholdt, Janna; Professorship of Agronomy, Institute of Agriculture and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany; Hadasch, Steffen; Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany; Macdonald, Andrew; Protecting Crops and Environment, Rothamsted Research, Harpenden, UK; Perryman, Sarah; Computational and Analytical Sciences Department, Rothamsted Research, Harpenden, UK; Piepho, Hans-Peter; Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany; Scott, Tony; Protecting Crops and Environment, Rothamsted Research, Harpenden, UK; Styczen, Merete Elisabeth; Section of Environmental Chemistry and Physics, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark; Storkey, Jonathan; Protecting Crops and Environment, Rothamsted Research, Harpenden, UKThe management of climate-resilient grassland systems is important for stable livestock fodder production. In the face of climate change, maintaining productivity while minimizing yield variance of grassland systems is increasingly challenging. To achieve climate-resilient and stable productivity of grasslands, a better understanding of the climatic drivers of long-term trends in yield variance and its dependence on agronomic inputs is required. Based on the Park Grass Experiment at Rothamsted (UK), we report for the first time the long-term trends in yield variance of grassland (1965–2018) in plots given different fertilizer and lime applications, with contrasting productivity and plant species diversity. We implemented a statistical model that allowed yield variance to be determined independently of yield level. Environmental abiotic covariates were included in a novel criss-cross regression approach to determine climatic drivers of yield variance and its dependence on agronomic management. Our findings highlight that sufficient liming and moderate fertilization can reduce yield variance while maintaining productivity and limiting loss of plant species diversity. Plots receiving the highest rate of nitrogen fertilizer or farmyard manure had the highest yield but were also more responsive to environmental variability and had less plant species diversity. We identified the days of water stress from March to October and temperature from July to August as the two main climatic drivers, explaining approximately one-third of the observed yield variance. These drivers helped explain consistent unimodal trends in yield variance—with a peak in approximately 1995, after which variance declined. Here, for the first time, we provide a novel statistical framework and a unique long-term dataset for understanding the trends in yield variance of managed grassland. The application of the criss-cross regression approach in other long-term agro-ecological trials could help identify climatic drivers of production risk and to derive agronomic strategies for improving the climate resilience of cropping systems.