Browsing by Subject "Metabolomics"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Publication Characterization of epidermal bladder cells in Chenopodium quinoa(2021) Otterbach, Sophie L.; Khoury, Holly; Rupasinghe, Thusitha; Mendis, Himasha; Kwan, Kim H.; Lui, Veronica; Natera, Siria H. A.; Klaiber, Iris; Allen, Nathaniel M.; Jarvis, David E.; Tester, Mark; Roessner, Ute; Schmöckel, Sandra M.Chenopodium quinoa (quinoa) is considered a superfood with its favourable nutrient composition and being gluten free. Quinoa has high tolerance to abiotic stresses, such as salinity, water deficit (drought) and cold. The tolerance mechanisms are yet to be elucidated. Quinoa has epidermal bladder cells (EBCs) that densely cover the shoot surface, particularly the younger parts of the plant. Here, we report on the EBC's primary and secondary metabolomes, as well as the lipidome in control conditions and in response to abiotic stresses. EBCs were isolated from plants after cold, heat, high‐light, water deficit and salt treatments. We used untargeted gas chromatography–mass spectrometry (GC–MS) to analyse metabolites and untargeted and targeted liquid chromatography‐MS (LC–MS) for lipids and secondary metabolite analyses. We identified 64 primary metabolites, including sugars, organic acids and amino acids, 19 secondary metabolites, including phenolic compounds, betanin and saponins and 240 lipids categorized in five groups including glycerolipids and phospholipids. We found only few changes in the metabolic composition of EBCs in response to abiotic stresses; these were metabolites related with heat, cold and high‐light treatments but not salt stress. Na+ concentrations were low in EBCs with all treatments and approximately two orders of magnitude lower than K+ concentrations.Publication Lipid remodeling of contrasting maize (Zea mays L.) hybrids under repeated drought(2023) Kränzlein, Markus; Schmöckel, Sandra M.; Geilfus, Christoph-Martin; Schulze, Waltraud X.; Altenbuchinger, Michael; Hrenn, Holger; Roessner, Ute; Zörb, ChristianThe role of recovery after drought has been proposed to play a more prominent role during the whole drought-adaption process than previously thought. Two maize hybrids with comparable growth but contrasting physiological responses were investigated using physiological, metabolic, and lipidomic tools to understand the plants’ strategies of lipid remodeling in response to repeated drought stimuli. Profound differences in adaptation between hybrids were discovered during the recovery phase, which likely gave rise to different degrees of lipid adaptability to the subsequent drought event. These differences in adaptability are visible in galactolipid metabolism and fatty acid saturation patterns during recovery and may lead to a membrane dysregulation in the sensitive maize hybrid. Moreover, the more drought-tolerant hybrid displays more changes of metabolite and lipid abundance with a higher number of differences within individual lipids, despite a lower physiological response, while the responses in the sensitive hybrid are higher in magnitude but lower in significance on the level of individual lipids and metabolites. This study suggests that lipid remodeling during recovery plays a key role in the drought response of plants.Publication Preharvest and postharvest factors affecting the quality profile of onion landraces(2021) Romo-Perez, Maria Luisa; Zörb, ChristianOnion cultivation has been practiced for over 4000 years and does not exist as a wild species. Over time onions have adapted to different climates, creating a wide range of varieties and landraces. Today, in modern agriculture, commercial onion breeders focus almost exclusively on conventional farming which increases the demand for certain well-known varieties and hybrids but lowers the diversity available in the mainstream market. Additionally, a clear need for new varieties of onions is heralded by organic farming systems, where pesticides and chemical fertilizers are banned. A way to preserve biodiversity and enrich the range of varieties available in organic farming systems is to re-evaluate traditional landraces and introduce their benefits to the broader public. Onions are known for their good storability, particular aroma, as well as for their health-promoting benefits due to the rich content of non-structural carbohydrates, flavonoids, and S-containing compounds. However, the quality status and sensorial characteristics of onions can be influenced through preharvest and postharvest factors. Some of those factors are genotype, soil, and storage conditions. Preharvest abiotic factors such as soil salinity can lead to several reduction of yield and quality aspects. Much like many other vegetable species, onions have always been classified as salt-sensitive crop. However, to date, there was very little evidence to that claim, and information about the impact of salinity on onion quality and physiology is lacking. This thesis aims to characterize onion landraces and compare them using targeted and untargeted metabolomics with commercial cultivars when grown under organic farming conditions. A part of this is evaluating the differences of landrace metabolite profile and the storage impact after five months of cold storage. Furthermore, this thesis discusses the effect of increased soil salinity on the metabolism and physiology of onion plants. In chapter 2, yield and quality aspects of studied onion varieties demonstrated that landraces can achieve similar or even better results than modern varieties Sturon and Red Baron when grown under organic farming conditions of South-West Germany. Furthermore, differences between Sturon and landraces demonstrated that parts of the aromatic and flavor properties found in landraces have been lost in modern genotypes (Chapter 3). These results indicate that the maximum potential of the modern onion varieties has not yet been reached and further optimization of their yield and quality parameter could be attained through future breeding programs that include local landraces. Among the studied landraces, Birnförmige, Stunova, and Rijnsburger 4 are the most interesting and promising candidates. For instance, Birnformige demonstrated not only good storability but also high levels of S-containing compounds and fructans. Stunova presented good yield stability and capacity, while Rijnsburger 4 exhibited the highest levels of amino acids suitable as precursors of aromatic substances as well as good storability. Despite several reports claiming that onions are sensitive to salinity, chapter 4 of this thesis demonstrated there is no reduction in plant growth, quality, or aroma in onion plants after moderate Na+ treatments. Nevertheless, in comparison with the landrace Birnformige, modern variety Sturon showed a slight increase of compatible solutes by Na+ accumulation, demonstrating that the potential of certain varieties for onion production under increased soil salinity is actually much higher than previously assumed.