Browsing by Subject "Methane sink"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Publication Impact of land use change on soil respiration and methane sink in tropical uplands, Southwestern China(2020) Lang, Rong; Cadisch, GeorgLand use conversion could modulate soil CO2 emissions and the balance between CH4 oxidation and production via changing soil physical, chemical and biological properties. Large areas of natural forests have been converted to rubber plantations in Southeast Asia, but its impact on soil CO2 and CH4 fluxes has not been sufficiently understood. This study was conducted in Xishuangbanna, Southwestern China, aiming to quantify the impact of this land use change on soil CO2 and CH4 fluxes and to clarify mechanisms responsible for the differences between natural forests and rubber plantations. Dynamics of soil respiration rates in two land uses were compared, and a mixed effect model was used in studying the interference of soil moisture on estimating temperature sensitivity (Q10) of soil respiration (Chapter 2). The land use change impact on the ability of soils to function as CH4 sink was firstly assessed with surface CH4 fluxes measured by static chambers, and then assessed with gas concentration profiles determined from soil probes. Confounded controlling factors and land use effects were disentangled, and the pathway of interactions between CH4 processes and mineral nitrogen was identified (Chapter 3). The concentration gradient method and one-dimensional diffusion-oxidation model were applied to quantify the vertical distribution of CH4 uptake in soil profiles, and to separate the relative control by gas diffusivity and by methanotrophic oxidation on CH4 uptake (Chapter 4). Distinct different temporal patterns of soil respiration were observed on sites during most of the rainy season: forest maintained a high soil respiration rate, while soil respiration in rubber plantations became suppressed (by up to 69%). Forest soils thus emitted the highest amount of CO2 with an annual cumulative flux of 8.48 ± 0.71 Mg C ha-1 yr-1, compared to 6.75 ± 0.79, 5.98 ± 0.42 and 5.09 ± 0.47 Mg C ha-1 yr-1 for 22-year-old rubber, rubber-tea intercropping, and 9-year-old rubber, respectively. Adding a quadratic soil moisture term into the regression model accounted for interference of moisture effect on the effect by soil temperature, therefore, improved temperature sensitivity assessments when high soil moisture suppressed soil respiration under rubber plantations. The static chamber method showed that soils under natural forest were stronger CH4 sinks than soils under rubber plantations, with annual CH4 fluxes of -2.41 ± 0.28 kg C ha-1 yr-1 and -1.01 ± 0.23 kg C ha-1 yr-1, respectively. Water-filled pore space was the main factor explaining the differences between natural forests and rubber plantations. Although soils under rubber plantations were more clayey than soils under natural forest, this was proved not to be the decisive factor driving higher soil moisture and lower CH4 uptake in the former soils. Concentration gradients method showed that CH4 consumption in 0-5 cm soil was significantly higher in natural forests than in rubber plantations, with a mean CH4 flux of -23.8 ± 1.0 and -14.4 ± 1.0 ug C m-2 h-1 for forest and rubber plantations, respectively. The atmospheric CH4 oxidized by top 10 cm soil accounted for 93% and 99% of total consumption for forest and rubber plantations, respectively. CH4 diffusivity at four sampled depths were significantly lower in rubber plantation than in forest. This reduced CH4 diffusivity, caused by altered soil water regime, predominately explained the weakened CH4 sink in converted rubber plantations. Estimated isotopic fractionation factor for carbon due to CH4 oxidation was 1.0292 ± 0.0015 (n=12). Modeling 13CH4 distribution in soil profiles using a diffusion-oxidation model explained the observations in the dry season, but suggested CH4 production in subsoil in the rainy season. In summary, converting natural forests into rubber plantations tended to reduce soil CO2 emissions, but this conversion substantially weakened CH4 uptake by tropical upland soils. The altered soil water regime and conditions of soil aeration under converted rubber plantations appear to have a pronounced impact on processes of gaseous carbon fluxes from soils. The clarified mechanisms in this study could improve the regional budget of greenhouse gases emissions in response to land use change and climate change.