Browsing by Subject "Monte-Carlo-Integration"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Publication Optimum schemes for hybrid maize breeding with doubled haploids(2011) Wegenast, Thilo; Melchinger, Albrecht E.In hybrid maize breeding, the doubled haploid technique is increasingly replacing conventional recurrent selfing for the development of new lines. In addition, novel statistical methods have become available as a result of enhanced computing facilities. This has opened up many avenues to develop more efficient breeding schemes and selection strategies for maximizing progress from selection. The overall aim of the present study was to compare the selection progress by employing different breeding schemes and selection strategies. Two breeding schemes were considered, each involving selection in two stages: (i) developing DH lines from S0 plants and evaluating their testcrosses in stage one and testcrosses of the promising DH lines in stage two (DHTC) and (ii) early testing for testcross performance of S1 families before production of DH lines from superior S1 families and then evaluating their testcrosses in the second stage (S1TC-DHTC). For both breeding schemes, we examined different selection strategies, in which variance components and budgets varied, the cross and family structure was considered or ignored, and best linear unbiased prediction (BLUP) of testcross performance was employed. The specific objectives were to (1) maximize through optimum allocation of test resources the progress from selection, using the selection gain (ΔG) or the probability to select superior genotypes (P(q)) as well as their standard deviations as criteria, (2) investigate the effect of parental selection, varying variance components and budgets on the optimum allocation of test resources for maximizing the progress from selection, (3) assess the optimum filial generation (S0 or S1) for DH production, (4) compare various selection strategies - sequential selection considering or ignoring the cross and family structure - for maximizing progress from selection, (5) examine the effect of producing a larger number of candidates within promising crosses and S1 families on the progress from selection, and (6) determine the effect of BLUP, where information from genetically related candidates is integrated in the selection criteria, on the progress from selection. For both breeding schemes, the best strategy was to select among all S1 families and/or DH lines ignoring the cross structure. Further, in breeding scheme S1TC-DHTC, the progress from selection increased with variable sizes of crosses and S1 families, i.e., larger numbers of DH lines devoted to superior crosses and S1 families. Parental cross selection strongly influenced the optimum allocation of test resources and, consequently, the selection gain ΔG in both breeding schemes. With an increasing correlation between the mean testcross performance of the parental lines and the mean testcross performance of their progenies, the superiority in progress from selection compared to randomly chosen parents increased markedly, whereas the optimum number of parental crosses decreased in favor of an increased number of test candidates within crosses. With BLUP, information from genetically related test candidates resulted in more precise estimates of their genotypic values and the progress from selection slightly increased for both optimization criteria ΔG and P(q), compared with conventional phenotypic selection. Analytical solutions to enable fast calculations of the optimum allocation of test resources were developed. This analytical approach superseded matrix inversions required for the solution of the mixed model equations. In breeding scheme S1TC-DHTC, the optimum allocation of test resources involved (1) 10 or more test locations at both stages, (2) 10 or fewer parental crosses each with 100 to 300 S1 families at the first stage, and (3) 500 or more DH lines within a low number of parental crosses and S1 families at the second stage. In breeding scheme DHTC, the optimum number of test candidates at the first stage was 5 to 10 times larger, whereas the number of test locations at the first stage and the number of DH lines at the second stage was strongly reduced compared with S1TC-DHTC. The possibility to reduce the number of parental crosses by selection among parental lines is of utmost importance for the optimization of the allocation of test resources and maximization of the progress from selection. Further, the optimum allocation of test resources is crucial to maximize the progress from selection under given economic and quantitative-genetic parameters. By using marker information and BLUP-based genomic selection, more efficient selection strategies could be developed for hybrid maize breeding.