Browsing by Subject "Myo-inositol"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Publication Effects of feeding diets without mineral P supplement on intestinal phytate degradation, blood concentrations of Ca and P, and excretion of Ca and P in two laying hen strains before and after onset of laying activity(2024) Sommerfeld, Vera; Bennewitz, Jörn; Camarinha-Silva, Amélia; Feger, Martina; Föller, Michael; Huber, Korinna; Oster, Michael; Ponsuksili, Siriluck; Schmucker, Sonja; Seifert, Jana; Stefanski, Volker; Wimmers, Klaus; Rodehutscord, MarkusThe objective of this study was to characterize intestinal phytate degradation and mineral utilization by 2 laying hen strains before and after the onset of egg laying using diets without or with a mineral phosphorus (P) supplement. One offspring of 10 roosters per strain (Lohmann Brown-classic [LB] and Lohmann LSL-classic [LSL]) was sacrificed before (wk 19) and after (wk 24) the onset of egg-laying activity and following 4 wk placement in a metabolic unit. Diets were corn-soybean meal-based and without supplemented P (P-) or with 1 g/kg supplemented P (P+) from monocalcium phosphate. In wk 19 and 24, the blood plasma and digesta of duodenum+jejunum and distal ileum were collected. The concentration of P in blood plasma was higher in hens fed P+ than P- (P < 0.001). In duodenum + jejunum and ileum content, the concentrations of InsP6, Ins(1,2,4,5,6)P5 and Ins(1,2,3,4,5)P5 were lower in P- than in P+ (P ≤ 0.009). In duodenum+jejunum, the concentrations of InsP6, Ins(1,2,4,5,6)P5 and Ins(1,2,3,4,5)P5 were lower in wk 24 than 19 and lower in LSL than LB hens (P < 0.001). The concentration of myo-inositol (MI) in duodenum + jejunum content was lower in wk 19 than 24 (P < 0.001). Following a 4-d total excreta collection, the retained amount of P was higher in P+ than P- (P < 0.001). Phosphorus retention was lower in LB hens fed P- than in other treatments (P × strain: P = 0.039). In the jejunal tissue, some genes related to intracellular InsP metabolism were higher expressed in LB than LSL hens. The renunciation of mineral P increased endogenous phytate degradation, but more P was retained with supplemented P. Differences in endogenous phytate degradation between the periods before and after the onset of egg laying might be attributed to different Ca concentrations in intestinal digesta caused by different Ca needs in both periods.Publication Effects of myo-inositol supplementation in the diet on myo-inositol concentrations in the intestine, blood, eggs, and excreta of laying hens(2025) Sommerfeld, Vera; Hanauska, Anna; Huber, Korinna; Bennewitz, Jörn; Camarinha-Silva, Amélia; Feger, Martina; Föller, Michael; Oster, Michael; Ponsuksili, Siriluck; Schmucker, Sonja; Seifert, Jana; Stefanski, Volker; Wimmers, Klaus; Rodehutscord, MarkusThe objectives of this study were to investigate whether an increased dietary myo-inositol (MI) supply translates into changes in MI concentrations and endogenous mucosal phosphatase activities in the intestine of laying hens and whether different laying hen strains respond differently to MI supplementation. The diets were corn–soybean meal-based and supplemented without (MI0) or with 1 (MI1), 2 (MI2), or 3 (MI3) g MI/kg feed. Ten hens per strain (Lohmann Brown-classic (LB) and Lohmann LSL-classic (LSL)) and diet were sacrificed at the age of 30 wk following a 4-wk stay in a metabolic unit. The blood plasma, digesta of the duodenum+jejunum and distal ileum, mucosa of the duodenum, and eggs were collected at wk 30. The concentration of MI in the blood plasma was increased by MI supplementation (P < 0.001); however, that of MI3 did not further increase compared with MI2. The concentration of MI in the duodenum+jejunum and ileum increased steadily (P < 0.001). The MI concentration in the duodenum+jejunum was higher in LB than in LSL hens (P = 0.017). The MI concentration in egg yolk was increased by MI supplementation (P < 0.001) and was higher in LB than in LSL hens (P = 0.015). Strain or diet did not affect mucosal phosphatase activity. Myo-inositol flow at the terminal ileum and postileal disappearance increased with each increment in MI supplementation (P < 0.001) and was higher in LB than in LSL hens (P ≤ 0.041). Regression analysis indicated that, on average, 84% of supplemented MI was retained in the body or metabolized and excreted in a different form. Based on the measured MI concentrations in the blood and eggs, dietary MI was not completely absorbed in the small intestine and, to a different extent, in the two laying hen strains. A higher dietary MI supply was followed by higher intestinal absorption or metabolism by microorganisms. The fate of supplemented MI and its relevance to birds warrant further research.Publication Effects of strain, lifespan and dietary myo-inositol sources on poultry metabolism(2020) Gonzalez Uarquin, Duvan Fernando; Huber, KorinnaPoultry production has shown a significant increase during the last decade. Meat and egg industry rapid growth implicates accelerating metabolic rate and general performance of birds. To maintain a high level of production, several strategies to achieve optimal raising and feeding have been implemented. Previous studies demonstrated the importance of MI metabolism on animal physiology; however, at present there is a substantial lack of information about the roles of MI and its metabolism in poultry. For instance, no information is available about MI concentration in organs of poultry. Moreover, it remains no elucidated, which are the effects of dietary sources of MI such as dietary phytase or pure MI supplementation. This thesis focused on gaining a comprehensive understanding of the potential roles of strain, productive period, and dietary sources of MI on poultry metabolism. To obtain the state of the art research on MI metabolism and its dietary sources in poultry, a comprehensive review of dietary MI was written (manuscript 1, chapter 3). This review revised information about MI in poultry such as feed sources, transport and cell metabolism, physiological meaning, and the influence of dietary MI in poultry. The revision indicated that MI appears to play critical roles in several different metabolic pathways so that understanding them could be an essential approach for future research in poultry. The second study was performed to study the effects of phytase and pure MI supplementation on the metabolite profile of broilers (manuscript 2, chapter 3). It was observed that phytase supplementation affected differently the metabolite profile than the supplementation of pure MI. Metabolites affected by phytase comprised several groups of metabolites such as acylcarnitines, phosphatidylcholines, sphingomyelins, lysophosphatidylcholines, and biogenic amines, whereas pure MI supplementation increased plasma concentrations of dopamine and serotonin. The third study was performed to get preliminary information about the effects caused by dietary phytase on systemic MI on the gastrointestinal tract, blood, and organs MI of broiler chickens (manuscript 3, chapter 3). Supplementation of 1500 FTU phytase/kg feed increased plasma and kidney MI concentrations. Plasma MI correlated negatively with InsP6 and positively with intestinal MI concentrations. A fourth study gave a general description of MI concentrations and general metabolite profile during the productive life of Lohmann Classic Brown and Lohmann LSL Classic laying hens. It was found that productive period affected MI and MI key enzymes expression. Moreover, the analyses showed differences in metabolite profiles being the onset of egg production, a determinant point. Differences were attributed to different groups of metabolites such as amino acids, biogenic amines, phosphatidylcholines, lysophosphatidylcholines, and sphingomyelins. The above mentioned, indicated each strain could express different MI concentrations and metabolite profiles during distinct productive periods what should be considered to future interventions. To conclude, findings from these investigations suggested intrinsic traits such as breed and stage of production and diet could affect MI and MI key enzymes expression as well as metabolite profiles. Future studies are needed to establish the roles of MI on poultry metabolism.Publication Studies of phytate degradation and associated mineral utilization in growing pigs(2024) Klein, Nicolas; Rodehutscord, MarkusPhosphorus (P) is primarily stored in plant seeds as phytate, which is any salt of phytic acid (myo-inositol hexakisphosphate; InsP6). The enzymatic capacity of pigs and the microorganisms present in their digestive tract allows for only partial and incomplete prececal degradation of InsP6. To address this limitation, the addition of exogenous phytases to feed has been state-of-the-art for more than three decades. Phytases, found in various organisms like bacteria, fungi, plants, and animals, initiate the breakdown of InsP6 and inorganic phosphate, thereby making the liberated phosphate available for digestion. Substantial scientific research and practical field applications have shown that adding exogenous phytases to the diet of non-ruminants leads to an improvement in P digestibility and a reduction in P excretion. Over time, phytases with enhanced thermal profiles and higher activity at physiological pH milieus have been engineered. Additionally, advancements in plant breeding have increased intrinsic phytase activity in feed ingredients relevant to animal nutrition. Thus, this thesis aimed to deepen the understanding of inositol phosphate (InsP) degradation in ileal-cannulated pigs, focusing on how dietary variables can influence this process along the digestive tract. In the first study (Manuscript 1), diets based on wheat with variable intrinsic phytase activity and the addition of an exogenous phytase on InsP degradation in pigs were investigated. Although wheat intrinsic phytase contributed to increased InsP degradation and P digestibility in pigs, variation in intrinsic phytase activity by crossbreeding wheat, as achieved in this study, was not reflected in InsP degradation and P digestibility data. This discrepancy may be attributed to an inadequate proteolytic resistance of wheat phytase in the gastric compartment of the pig. A marked increase in prececal InsP degradation and P digestibility was achieved by adding a microbial phytase to the wheat-based feed. While exogenous phytase increases the digestibility of InsP-P, other dietary components may impair its hydrolytic activity. In the second study (Manuscript 2), the single and interactive effects of dietary Ca concentration and exogenous phytase in pigs were investigated. The study assessed the effects of dietary Ca and exogenous phytase on InsP degradation and nutrient digestibility in growing pigs. Additional dietary Ca decreased prececal InsP6 disappearance, but only with exogenous phytase. Concentrations of lower InsP isomers and myo-inositol in the ileal digesta and prececal P digestibility were greater with exogenous phytase, but not affected by dietary Ca concentration. In contrast, fecal InsP6 disappearance was lower and the concentration of InsP4-5 isomers in feces was greater with additional dietary Ca. The study revealed that dietary Ca concentration is relevant for InsP disappearance in the hindgut, but not in the ileum. However, when exogenous phytase is used, the dietary Ca concentration is important because prececal InsP degradation is affected by the Ca level in the diet. The third study (Manuscript 3) aimed to investigate the effects of dietary Ca sources, exogenous phytase, and formic acid on InsP degradation and nutrient digestibility in growing pigs. Replacing limestone with Ca formate reduced prececal InsP6 disappearance and prececal P digestibility. However, adding formic acid to a diet containing limestone and phytase enhanced prececal InsP6 disappearance and increased InsP2 and myo-inositol concentrations in the distal ileal digesta. Accordingly, prececal P digestibility was increased when formic acid was added to the diet containing limestone and exogenous phytase. This suggested that Ca formate is not a suitable alternative Ca source to limestone for optimizing prececal P release from InsP in growing pigs. The release of P from InsP by exogenous phytase in limestone diets can still be further increased by adding formic acid. In conclusion, the degradation of InsP in growing pigs is a complex process affected by dietary Ca concentration, dietary Ca source, and the presence of phytase. However, investigated dietary traits mainly affected InsP6, with lesser effects on lower InsP isomers, highlighting the importance of prececal hydrolytic breakdown of InsP6 to InsP5. This directly affected P digestibility of growing pigs. Intrinsic phytase activity in feed ingredients, such as wheat, can contribute to prececal InsP degradation but may be neglected when exogenous phytase is present in the feed. Exogenous phytase addition notably increased prececal InsP degradation and P digestibility in plant-based diets, and complete dephosphorylation of InsP in the prececal tract was implied by the increase of the final degradation product myo-inositol in the ileum content, urine, and blood. However, some P remained bound to InsP at the end of the ileum of growing pigs and was therefore not available for digestion. Nevertheless, some diets with exogenous phytase tested in this thesis met the recommended digestible P concentration. This suggests that diets formulated with adequate InsP-containing ingredients and exogenous phytase may obviate the need for mineral P addition, reducing the reliance on finite P sources in growing pig nutrition.