Browsing by Subject "Nitrate"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Publication Ammonium fertilization increases the susceptibility to fungal leaf and root pathogens in winter wheat(2022) Maywald, Niels Julian; Mang, Melissa; Pahls, Nathalie; Neumann, Günter; Ludewig, Uwe; Francioli, DavideNitrogen (N) fertilization is indispensable for high yields in agriculture due to its central role in plant growth and fitness. Different N forms affect plant defense against foliar pathogens and may alter soil–plant-microbe interactions. To date, however, the complex relationships between N forms and host defense are poorly understood. For this purpose, nitrate, ammonium, and cyanamide were compared in greenhouse pot trials with the aim to suppress two important fungal wheat pathogens Blumeria graminis f. sp. tritici (Bgt) and Gaeumannomyces graminis f. sp. tritici (Ggt). Wheat inoculated with the foliar pathogen Bgt was comparatively up to 80% less infested when fertilized with nitrate or cyanamide than with ammonium. Likewise, soil inoculation with the fungal pathogen Ggt revealed a 38% higher percentage of take-all infected roots in ammonium-fertilized plants. The bacterial rhizosphere microbiome was little affected by the N form, whereas the fungal community composition and structure were shaped by the different N fertilization, as revealed from metabarcoding data. Importantly, we observed a higher abundance of fungal pathogenic taxa in the ammonium-fertilized treatment compared to the other N treatments. Taken together, our findings demonstrated the critical role of fertilized N forms for host–pathogen interactions and wheat rhizosphere microbiome assemblage, which are relevant for plant fitness and performance.Publication Developing indicators and characterizing direct and residual effects of biological nitrification inhibition (BNI) by the tropical forage grass Brachiaria humidicola(2018) Karwat, Hannes; Cadisch, GeorgNitrogen (N) losses from agroecosystems harm the environment via increased nitrate (NO3-) amounts in water-bodies and nitrous oxide (N2O) emissions to the atmosphere. Bacteria and archaea oxidize ammonium (NH4+) to NO3- under aerobic conditions. Furthermore, under mainly anaerobic conditions, microbial denitrification reduces NO3- to gaseous N forms. The tropical forage grass Brachiaria humidicola (Rendle) Schweick (Bh) has been shown to reduce soil microbial nitrification via root derived substances. Therefore, biological nitrification inhibition (BNI) by Bh might contribute to reduction of N losses from agroecosystems. The present doctoral thesis aimed at assessing the potential of the actual BNI by Bh, as well as the residual BNI effect with new developed methodologies. The overall research was based on the following major objectives: (1) characterization of the residual BNI effect by Bh on recovery of N by subsequent cropped maize (Zea mays L.) under different N fertilization rates; (2) investigate if low enzymatic nitrate reductase activity (NRA) in leaves of Bh is linked to reduced NO3- nutrition by effective BNI; (3) identify a possible link between plant delta 15N of Bh and the BNI effect of different Bh genotypes on nitrification, plant N uptake and NO3- leaching losses. The overall objective was to use and test new methodologies with a minimum of disturbance of the plant-soil system, to characterize BNI of different Bh genotypes in greenhouse and field studies. The first research study focused on the investigation of a potential residual BNI effect of a converted long-term Bh pasture on subsequent maize cropping, where a long-term maize monocrop field served as control. The residual BNI effect was characterized in terms of enhanced maize grain yield, total N uptake and 15N (labeled) fertilizer recovery. Furthermore, the impact of residual BNI effect on soil N dynamics was investigated. The residual BNI effect was confirmed for the first maize crop season after pasture conversion on the basis of lower nitrification in incubation soil, higher total N uptake and higher maize grain yields. However, the residual BNI effect did not result in higher 15N fertilizer uptake or reduced 15N fertilizer losses, nor in reduced N20 emissions. Applied N was strongly immobilized due to long-term root turnover effects, while a significant residual BNI effect from Bh prevented re-mineralized N from rapid nitrification resulting in improved maize performance. A significant residual Bh BNI effect was evident for less than one year only. In the second research study it was the aim to verify the potential of nitrate reductase activity (NRA) as a proxy for the detection of in vivo performance of BNI by selected Bh accessions and genotypes grown under contrasting fertilization regimes. NRA was detected in Bh leaves rather than in roots, regardless of NO3- availability. Leaf NRA correlated with NO3- contents in soils and stem sap of contrasting Bh genotypes substantiating its use as a proxy of in vivo performance of BNI. The leaf NRA assay facilitated a rapid screening of contrasting Bh genotypes for their differences in in vivo performance of BNI under field and greenhouse conditions; but inconsistency of the BNI potential by selected Bh genotypes was observed. The third research study emphasized to link the natural abundance of delta 15N in Bh plants with reduced NO3- losses and enhanced N uptake due to BNI. Increased leached NO3- was positively correlated to rising delta 15N in Bh grass, whereas the correlation between plant N uptake and plant delta 15N was inverse. Long-term field cultivation of Bh decreased nitrification in incubated soil, whereas delta 15N of Bh declined and plant N% rose over time. Delta 15N of Bh correlated positively with assessed nitrification rates in incubated soil. It was concluded that decreasing delta 15N of Bh over time reflects the long-term effect of BNI linked to lower NO3- formation and reduced NO3- leaching, and that generally higher BNI activity of Bh is indicated by lower delta 15N plant values. Within the framework of this thesis, a residual BNI effect by Bh on maize cropping could be confirmed for one season due to the combined methodological approaches of soil incubation and 15N recovery. The development of the NRA assay for sampled Bh leaves was validated as a rapid and reliable method linked to the actual soil nitrification after NH4+ fertilizer supply. Consequently, the assay could be used for both greenhouse and field studies as BNI proxy. The gathered data from the third study indicated that decreasing delta 15N of Bh over time reflects the long-term effect of BNI linked to lower NO3- formation and reduced NO3- leaching, and that generally higher BNI activity of Bh is indicated by lower delta 15N plant values. Consequently, it was suggested that delta 15N of Bh could serve as an indicator of cumulative NO3- losses. Overall, this doctoral thesis suggests the depressing effect on nitrification by Bh might be a combined effect by BNI and fostered N immobilization. Furthermore, BNI by Bh might be altered by different factors such as soil type, plant age and root morphology of the genotypes. Finally, future studies should consider that Bh genotypes express their respective BNI potential differently under contrasting conditions.Publication Effects of nitrification inhibitors and application technique on trace gas fluxes from a maize field after cattle slurry fertilization(2019) Herr, Christina; Müller, TorstenIn a time of climate change and against the background of intensive animal husbandry and biogas production in Germany, strategies for mitigation of greenhouse gas (GHG) release and Nitrogen (N) losses from silage maize production become increasingly important, especially for organic fertilizers. Consequently, the main objective of this study was to determine the height of GHG release from silage maize production on a medium textured soil which is typical for this region in Southwest Germany and to evaluate useful fertilization opportunities to mitigate carbon dioxide (CO2) footprint per yield unit. To identify management factors improving GHG budget from silage maize, annual nitrous oxide (N2O) and methane (CH4) measurements were carried out during maize growth and subsequent black fallow at least weekly. Investigations were conducted over two years on two adjacent fields (one for each study year). Amounts of ammonia (NH3) volatilizations after fertilization and nitrate (NO3-) leaching losses were also included in GHG balances. In dependence on available data, determined or estimated values were used. Additionally, yield and N removal from maize plants were quantified. The basic treatments of this study which investigated impact of fertilizer form and application techniques, were an unfertilized control (CON), a mineral fertilization (MIN), a banded cattle slurry application by trailing hose and subsequent incorporation (INC) and a cattle slurry injection (INJ). As confirmed repeatedly, in contrast to broadcast slurry incorporation, slurry injection efficiently reduced the risk of NH3 losses by direct slurry placement into the soil, but simultaneously provoked N2O formation more strongly, probably due to the anaerobic conditions in the injection slot favoring denitrification. For reducing N2O release from slurry injection, the applicability of six single or combined nitrification inhibitors (NIs) concerning potential GHG reduction were investigated. This N2O reduction should be reached through the desynchronized availability of carbon (C) and NO3-, derived from nitrified slurry ammonium (NH4+). Thus, in the period after slurry application, N2O losses from denitrification as well as from nitrification should be reduced through NIs. For final evaluation, collection of measured and estimated data (including direct and indirect N2O losses (NH3, NO3-), CH4 budget, pre-chain emissions from mineral fertilizer and fuel consumption) were converted into CO2 equivalents and summarized as area- or yield-related GHG balances. Except for one of the INJ treatments with NI (exclusively investigated in the first year) and one INC treatment with NI (exclusively investigated in the second year), all remaining treatments were tested in both experimental years. The height of NH3 emissions from INC treatment (12-23 % of applied NH4+-N) was more weather-dependent than those from INJ treatment (12-15 % of applied NH4+-N). In mean over both years, cumulative N2O emission from INJ treatment (13.8 kg N2O-N ha-1 yr-1), was significantly higher than from CON, MIN, and INC which recorded 2.8, 4.7, and 4.4 kg N2O-N ha-1 yr-1. NIs decreased the fertilization-induced N2O emissions from injection by 36 % (mean over all NIs and years) by an order of magnitude comparable to slurry incorporation. The NIs investigated tended to be categorized in inhibitors with prior and delayed inhibitory maximum. Whether low persistence, or poor biological degradability was an advantage, depended on environmental conditions. A combination of two NIs, one with putative prior and one with delayed release behavior reached the highest N2O reduction. In the additional INC treatment, this NI combination tended to reduce annual N2O release by 20 % in comparison to incorporation without inhibitor. Beside the potential of reducing fertilization-induced N2O emissions, NIs might also help to improve CH4 budgets in silage maize production. In general, CON, MIN and INC were net CH4 sinks in both years with mean uptakes of 460, 127, and 793 g CH4-C ha-1 yr-1, respectively. Conversely, slurry injection resulted in net CH4 emissions of 3144 g CH4-C ha-1 yr-1 (mean over both years). However, NIs tended to reduce CH4 emissions from injection by around 48 % and increased CH4 consumption from slurry incorporation by 20 %. Across all treatments and years, direct N2O emissions were the major contributor to total GHG balance. Yield-related GHG budgets from both years were lowest for CON, followed by INC or MIN treatment and significantly highest for sole slurry injection. NIs decreased fertilization-induced GHG release from injection in mean over both years by order of magnitude comparable with slurry incorporation. Consequently, alongside slurry incorporation and broadcast mineral fertilization, slurry injection combined with recommended NIs was evaluated as an equally appropriate fertilization strategy in terms of the atmospheric burden for livestock farmers.Publication Fertilization strategies to improve the plant growth-promoting potential of microbial bio-effectors(2020) Mpanga Kwadwo, Isaac; Neumann, GünterThe use of plant growth-promoting microorganisms (PGPMs) as inoculants to support nutrient acquisition of crops is discussed as a promising strategy for improving fertilizer use efficiency, to enable crop production with less input of fertilizers, and to reduce detrimental environmental side effects related with high inputs of mineral fertilizers. However, the efficiency of PGPM-assisted cropping systems is still biased by the limited reproducibility of the expected effects under real production conditions. This can be attributed to the sensitivity of plant-PGPM interactions to environmental stress factors particularly during the phase of establishment and to limited knowledge on positive or negative interactions with the native soil microbiome and the application conditions required for successful rhizosphere colonization as a pre-requisite for beneficial plant PGPM interactions. This study demonstrated that the combination with compatible fertilizers offers an option to promote the establishment of PGPM effects as a potential management option to improve the performance of PGPM-assisted production strategies. In a range of model experiments with maize with a limited inherent potential for root-induced P-solubilization, it was demonstrated that the acquisition of sparingly soluble Ca-phosphates could be synergistically improved by a combination of PGPM inoculants with ammonium fertilizers, stabilized with nitrification inhibitors (Chapter 4). The effect was demonstrated for PGPMs based on 15 different fungal (genus: Trichoderma, Penicillium) and bacterial (genus: Bacillus, Paenibacillus, Pseudomonas, Streptomyces) strains and strain combinations, which were largely ineffective in combination with nitrate fertilization. On average over all experiments, the PGPM-ammonium combinations with sparingly soluble Ca-P supply reached about 84% of the shoot biomass production and 80% of the shoot P accumulation as compared with positive controls fertilized with soluble P. The soil pH-buffering capacity, particularly on neutral to alkaline soils, was identified as a limiting factor, counteracting the plant growth-promoting potential of the selected inoculants with a proven ability for Ca-P solubilization on artificial growth media. Accordingly, plants supplied with nitrate fertilization were severely P deficient and the weak host plants were unable to establish a functional association with the microbial inoculants. By contrast, stabilized ammonium fertilization triggered root extrusion of protons for charge balance of ammonium uptake, associated with rhizosphere acidification, contributing to P solubilization. This increased the P-nutritional status and vitality of the host plants, which enabled the establishment of PGPMs in the rhizosphere. Interestingly in this scenario, the contribution of the PGPM inoculants to plant P acquisition was only marginally expressed but the PGPMs stimulated root development, contributing to an improved nutrient acquisition in general (Chapter 4.1). A closer look on the related modes of action (Chapter 4.2) revealed that ammonium fertilization stimulated the production of auxin as a key regulator for root growth, both, by the bacterial inoculants and by the roots of the host plants. While ammonium supply without PGPM inoculants had no effects on total root length, the length of the root hairs and the diameter of rhizosheaths formed by root hair-adhering soil was increased, leading to an extension of the root surface area involved in rhizosphere acidification and spatial acquisition of nutrients. Moreover, root hairs have been reported as preferential infection sites for various inoculants investigated in this study, and accordingly increased root colonization of the fungal inoculant Trichoderma harzianum OMG16 was recorded in combination with ammonium fertilization. By contrast, there was no evidence for increased organic acid production or a contribution of the inoculants to the acquisition of organic P sources by the release of phosphohydrolases in the investigated strains. Increased rhizosphere acidification after PGPM inoculation in combination with ammonium fertilization was observed exceptionally only in one experiment conducted on a moderately acidic sandy soil with a low buffering capacity. However, soil pH was identified as a critical factor determining the expression of the synergistic PGPM-ammonium effects on Ca-P solubilization, which declined with increasing soil pH (Chapter 4.3). Highly-buffered calcareous soils counteracted ammonium-induced rhizosphere acidification and P mobilization as a pre-requisite for PGPM-establishment in the rhizosphere. Under these conditions, successful experiments with applications of granulated fertilizers, based on stabilized di-ammonium phosphate and PGPM inoculants, suggest that placement of starter fertilizers leading to a more concentrated ammonium effect may offer an option to overcome this problem. First field experiments suggested that beneficial effects of ammonium-assisted PGPM inoculation on P acquisition can be expected particularly on soils with low P availability and the approach was patented in 2018. As a second approach, the combination of PGPMs with fertilizers based on products of organic waste recycling, such as municipal waste compost or composted poultry manure (PM compost), applied with the same P dose, were investigated with tomato as model plant on low P soils with contrasting pH in Ghana (Chapter 5). Interestingly, on both soils, PGPM inoculation increased the P use efficiency and early plant growth only in the combination of compost with PM but not with sole compost application. Additional supplementation with ammonium on the moderately acidic soil increased plant biomass production in PGPM inoculated plants to the same level as soluble superphosphate fertilization. Similar to the ammonium-PGPM combinations, root growth stimulation was a major PGPM effect, which improved nutrient acquisition in general. Large-scale greenhouse and open-field tomato production trials conducted in Romania and Hungary revealed reproducible effects on yield and fruit quality over three years by PGPM combinations with manure-based fertilizers (Chapter 6). Taken together, the thesis demonstrated that the selection of compatible combinations of fertilizers and PGPM inoculants is an essential factor for the successful establishment of beneficial plant-PGPM interactions in the rhizosphere. Combinations with stabilized ammonium fertilizers or with products based on organic waste recycling, such as composted manures, have been identified as two promising examples with potential for the development of PGPM-assisted production systems.Publication The functional diversity of the high-affinity nitrate transporter gene family in hexaploid wheat: Insights from distinct expression profiles(2023) Sigalas, Petros P.; Buchner, Peter; Kröper, Alex; Hawkesford, Malcolm J.High-affinity nitrate transporters (NRT) are key components for nitrogen (N) acquisition and distribution within plants. However, insights on these transporters in wheat are scarce. This study presents a comprehensive analysis of the NRT2 and NRT3 gene families, where the aim is to shed light on their functionality and to evaluate their responses to N availability. A total of 53 NRT2s and 11 NRT3s were identified in the bread wheat genome, and these were grouped into different clades and homoeologous subgroups. The transcriptional dynamics of the identified NRT2 and NRT3 genes, in response to N starvation and nitrate resupply, were examined by RT-qPCR in the roots and shoots of hydroponically grown wheat plants through a time course experiment. Additionally, the spatial expression patterns of these genes were explored within the plant. The NRT2s of clade 1, TaNRT2.1-2.6, showed a root-specific expression and significant upregulation in response to N starvation, thus emphasizing a role in N acquisition. However, most of the clade 2 NRT2s displayed reduced expression under N-starved conditions. Nitrate resupply after N starvation revealed rapid responsiveness in TaNRT2.1-2.6, while clade 2 genes exhibited gradual induction, primarily in the roots. TaNRT2.18 was highly expressed in above-ground tissues and exhibited distinct nitrate-related response patterns for roots and shoots. The TaNRT3 gene expression closely paralleled the profiles of TaNRT2.1-2.6 in response to nitrate induction. These findings enhance the understanding of NRT2 and NRT3 involvement in nitrogen uptake and utilization, and they could have practical implications for improving nitrogen use efficiency. The study also recommends a standardized nomenclature for wheat NRT2 genes, thereby addressing prior naming inconsistencies.Publication Highlighting outstanding beetroot varieties for the food industry - Evaluation of agronomic and compositional attributes of organically grown beetroot (Beta vulgaris L. subsp. vulgaris) varieties(2022) Yasaminshirazi, Khadijeh; Graeff-Hönninger, SimoneThe constant increase in awareness of the relationship between health and diet changed consumers’ perception of food and, accordingly, their food products’ choices. In this regard, the demand for foods, which promote mental and physical health and prevent specific diseases, has increased. Due to its high amount of bioactive compounds, which permits the reformulation of conventional products and transformation of them into functional foods, beetroot (Beta vulgaris L. subsp. vulgaris) was classified as a superfood. On account of the rising demand for organic food products, there is a necessity for varieties, which are adapted to the special requirements of organic farming. Alongside growing beetroot genotypes with desirable agronomic performances and promising contents of bioactive compounds, preserving the quality of harvested beetroots for an extended time can prolong the availability and use of this crop. Hence, affordable and easy-accessible possibilities for prolonging the shelf life of beetroot are required. This thesis aimed to disclose the genetic potential of a broad assortment of new and existing open-pollinated beetroot genotypes, which perform desirably in terms of agronomic and morphological traits (Publication I), compositional characteristics (Publication II), and quality stability (Publication III) under organic farming conditions. In this respect, in total, six genotype-screening field experiments were conducted in 2017 and 2018 at three different locations. Results of the first publication depicted a significant impact of genotype on the total and marketable yields, as well as most of the assessed morphological traits, including skin smoothness, corky surface, and beet shape uniformity. With the analysis of the contents of the total dry matter, total soluble sugar, nitrate, betalains, and total phenolic compounds in the second publication, significant differences were found between 15 studied beetroot genotypes. In addition, the outcome of the third publication demonstrated a significant effect of genotype on all measured compounds of 36 examined beetroot genotypes. Furthermore, the extent of change in the compositional quality during four months of cold storage was assessed for all studied genotypes. On account of the existing genetic variability in beetroot, it was concluded that the intended final utilization should be taken into account for the selection of suitable genotypes. In addition to the conducted assessments in Publication I – III, in the overall project framework from which this thesis was derived, the sensory characteristics of selected open-pollinated genotypes were compared with the commercially used varieties. Three sensory tests were carried out at the University of Hohenheim to determine consumers’ perception of the desired beetroot taste characteristics, including sweetness, aroma intensity, bitterness, earthy flavour, and the degree of acceptability. Generally seen, the studied open-pollinated genotypes indicated more sweetness and less bitterness compared to the F1 hybrid varieties. Furthermore, this thesis assessed the impact of nitrogen fertilisation level on selected compounds (nitrate and total soluble sugar contents) of specific genotypes (Borus, Ronjana, and Regulski Okragly) at the University of Hohenheim in 2018 and 2019. The outcomes indicated no significant influence of the N fertilisation rate on the total soluble sugar content. However, the impacts of fertilisation level and interactions between year and replication on the nitrate content were significant. Consequently, with adjusted N fertilisation, the amount of nitrate in beetroot can be directed in the desired direction based on the intended product (for example, sport drinks with high nitrate levels, and baby food with low nitrate levels). Nevertheless, in the pool of the investigated genotypes in Publication III, some genotypes possessed a comparable nitrate content with the highest values reached by using additional N-fertilisation in this experiment. To conclude, with the investigation of a broad assortment of beetroot genotypes, the findings of the present thesis revealed a high genetic variability regarding yield, morphological and compositional characteristics of beetroot, which provide new possibilities for farmers, the food industry, and consumers. To ensure the competency of the studied genotypes, further studies concerning the determination of other taste-relevant compounds like geosmin and disputable compounds such as oxalic acid are highly recommended. Moreover, to extend the use of the functional properties of fresh beetroot throughout the year, besides the selection of a suitable genotype, the external factors, such as storage conditions, should be optimized as well.Publication Leaf gas exchange of lowland rice in response to nitrogen source and vapor pressure deficit(2021) Vu, Duy Hoang; Stürz, Sabine; Pieters, Alejandro; Asch, FolkardBackground: In anaerobic lowland fields, ammonium (NH4+) is the dominant form of nitrogen (N) taken up by rice plants, however, with the large expansion of water-saving irrigation practices, nitrification is favored during drained periods, leading to an increased availability of nitrate (NO3−). Aim: Since the uptake and assimilation of the two N-sources differ in their demand of pho- tosynthates, leaf gas exchange may be subject to adjustments in response to N-sources, particularly at high evaporative demand, when stomatal conductance (gs ) is very sensitive. Methods: Three experiments were carried out to study leaf gas exchange of various low- land rice varieties in response to N-source at low and high vapor pressure deficit (VPD). In the first experiment, seedlings of 12 rice varieties were grown at high VPD for 3 weeks. From this, four rice varieties differing in gs and CO2 assimilation rate (A) were selected and grown for 2 weeks at low VPD, and after that, they were shifted to high VPD for 1 week, whereas in the third experiment, the same varieties were grown separately at low and high VPD conditions for 2 weeks. In all three experiments, plants were grown hydroponi- cally in nutrient solution with N-sources as sole NH4+ or NO3−. Results: At high VPD, NO3− nutrition led to a higher gs and A in four out of 12 vari- eties (IR64, BT7, NU838, and Nipponbare) relative to NH4+ nutrition, while no effect was observed at low VPD or after a short-term exposure to high VPD. Further, varieties with a high intrinsic water-use efficiency (WUEi; IR64 and BT7) showed the strongest response to N-source. Higher gs was partially supported by increased root/shoot ratio, but could not be fully explained by the measured parameters. However, higher A in NO3−-fed plants did not always result in increased plant dry matter, which is probably related to the higher energy demand for NO3− assimilation. Our results suggest that at high VPD, NO3− nutri- tion can improve leaf gas exchange in varieties having a high WUEi, provided a sufficient water supply. Conclusion: Therefore, intensified nitrification under water-saving irrigation measures may improve leaf gas exchange and the growth of rice plants under high transpirational demand. However, choice of variety seems crucial since large varietal differences were observed in response to N-source. Further, breeding strategies for genotypes adapted to aerobic soil conditions should consider responses to NO3−, potentially using gas exchange measurements as a screening tool.Publication Modeling and spatiotemporal mapping of water quality through remote sensing techniques: A case study of the Hassan Addakhil dam(2021) El Ouali, Anas; El Hafyani, Mohammed; Roubil, Allal; Lahrach, Abderrahim; Essahlaoui, Ali; Hamid, Fatima Ezzahra; Muzirafuti, Anselme; Paraforos, Dimitrios S.; Lanza, Stefania; Randazzo, GiovanniWith its high water potential, the Ziz basin is one of the most important basins in Morocco. This paper aims to develop a methodology for spatiotemporal monitoring of the water quality of the Hassan Addakhil dam using remote sensing techniques combined with a modeling approach. Firstly, several models were established for the different water quality parameters (nitrate, dissolved oxygen and chlorophyll a) by combining field and satellite data. In a second step, the calibration and validation of the selected models were performed based on the following statistical parameters: compliance index R2, the root mean square error and p-value. Finally, the satellite data were used to carry out spatiotemporal monitoring of the water quality. The field results show excellent quality for most of the samples. In terms of the modeling approach, the selected models for the three parameters (nitrate, dissolved oxygen and chlorophyll a) have shown a good correlation between the measured and estimated values with compliance index values of 0.62, 0.56 and 0.58 and root mean square error values of 0.16 mg/L, 0.65 mg/L and 0.07 µg/L for nitrate, dissolved oxygen and chlorophyll a, respectively. After the calibration, the validation and the selection of the models, the spatiotemporal variation of water quality was determined thanks to the multitemporal satellite data. The results show that this approach is an effective and valid methodology for the modeling and spatiotemporal mapping of water quality in the reservoir of the Hassan Addakhil dam. It can also provide valuable support for decision-makers in water quality monitoring as it can be applied to other regions with similar conditions.Publication Spektralphotometrische Bestimmung des pflanzenverfügbaren Nitrats in der Bodenlösung : Entwicklung einer in-situ Messmethode zur Optimierung der Fertigation im intensiven Gemüsebau(2015) Mayer, Stephan; Müller, TorstenFor many specialized cultivations, mainly in intensive horticulture, a slight N-deficiency may dramatically reduce crop quality and yield. Hence, especially in this case, fertilizer is often applied in surplus. Compared to the real N-demand of a crop, this results in a large investment in fertilizer and may also promote nitrogen loss due to leaching. At many sites, the consequences of this are nitrate contaminated ground and surface water. An in-situ method for the continuous determination of the actual and plant-available nitrate content in soil solution, which may be fundamental for adapted and culture specific fertilization, has not yet been created for practical use in horticulture. Such a method would minimize excessive nitrate loads, reduce fertilizer use as well as omit labor required for soil sampling for Nmin determination. The aim of this thesis is to develop such an in-situ method. For this purpose, nitrate was detected and quantified in soil solution by ultraviolet spectrophotometry. Based on these measurements and a comparison with the N-demand of the chosen crop, an adapted fertilization plan was established. Recovery of the necessary soil solution was carried out in the field with the aid of suction cups, which were connected to a vacuum system, which directed the solution to a measuring cell where the spectrophotometric measurement was performed. The data was collected and evaluated on an external server. After the calculation of the actual nitrate concentration, based on the spectral data, and comparing them to the N-demand, the need and amount of fertilization was determined. This process is performed automatically. Based on numerous lab experiments, one pot and two greenhouse experiments, the suitability of the nitrate-online-measurement-system (NITROM) for the determination of nitrate concentration in soil solution was tested, calibrated and validated on a total of twelve soil types, two gardening substrates and three different cultures. For the calculation of the nitrate concentration from spectral data, simple and multiple linear regressions (SLR, MLR), as well as polynomial multiple regression (PMR), were compared. Lab results of the nitrate UV absorption between 230 and 260 nm in pure nitrate standards (0 – 1000 mg NO3-- L-1) showed highly linear relationships for several wavelengths (231 und 240 nm: R2 > 0.999, p < 0.001). Low nitrate concentrations (0 – 150 mg L-1) were precisely determined between 230 and 240 nm, while high nitrate concentrations (150 – 1000 mg L-1) were determined between 240 and 250 nm. For UV measurements in soil solution with several interfering substances, no linearity was achieved (see below). The predominant interfering substances for nitrate measurements in the field are aromatic and alkene compounds in dissolved organic carbon (DOC). The complex structure of DOC may only be considered in a calibration through a multi-wavelength approach, accounting for wavelengths from the ranges of high and low nitrate concentrations as well as the reference range without nitrate absorption (250 – 260 nm). The PMR, in comparison to SLR and MLR, fit best for the estimation of nitrate concentration from spectral data. This can be seen in the field data obtained from the first greenhouse experiment (PMR: R2 = 0.963, p < 0.001; MLR: R2 = 0.948, p < 0.001; SLR 232 nm: R2 = 0.093, p = 0.047). The pot experiment with three different soil types and two gardening substrates allowed i.a. conclusions of DOC quality on different sites and confirms the need for a site-specific calibration of the measurement method. During the second greenhouse experiment, the entire NITROM technology was tested. Data obtained during half an hour intervals over a period of five weeks was evaluated online. Using a PMR calibration, a soil nitrate content curve (n = 998) was created and fertilizer loads were adapted. The fertilization events are clearly recognizable as distinct peaks in the graph. The PMR calibration (with 15 wavelength and n = 36) was highly significant (p = 0.001) and had a R2 > 0.999. The validation of the calibration reveals a relative estimation error of 6.1 %. The suitability of this method for in-situ determination of the nitrate concentration, as well as an adapted and culture specific fertilization management on the basis of measured data, can be confirmed. Further improvements to refine the measurement technology and evaluation procedure, as well as calibration of the method for DOC, are planned.