Browsing by Subject "North China Plain"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Publication Economic analysis on the agro-environmental impacts of management and policy measures in the North China Plain(2011) Kühl, Yannick; Zeddies, JürgenThe increased use of agricultural inputs like fertilizers and pesticides led to wide-spread negative environmental impacts of agriculture in the North China Plain (NCP). The context of this research is that, due to continued growth of the population and the economy, the demand for agricultural products in China is gradually rising. However resources like land and water are scarce in China. Therefore new strategies need to be developed which do not put additional strains on the environment but meet the expected demand. The NCP is regarded as China?s most important agricultural region. This work aims at describing and discussing the environmental effects of agriculture in the NCP. The extent of these environmental impacts is presented. An essential part of this work is the in-depth description and analysis of the current cropping systems and farming practices, which is based on the findings a household survey. The central hypothesis of this work is that a change of the management systems is able to meet the production goals, to achieve a higher input-output efficiency and to reduce negative environmental impacts. Embedded in the objectives of this work, the main goals are the description of current agricultural practices and related negative environmental impacts, the definition of agro-environmental management and policy measures, impact analysis of management and policy measures and the development of suggestions for further research. The second chapter aims at introducing the background of this research, i.e. the environmental impacts of agriculture. Hereby the focus lies on the introduction of relevant and characteristic farming practices and on the related institutional setting. Then the processes of data acquisition and data handling for this work are described. The descriptive analysis presents the findings from a survey in July 2008; it aims at describing the characteristics of the surveyed farm households. Chapter 5 describes the methodologies which are applied for the analysis in this work. The first part describes the methodology of Linear Programming and its selection process. The second part explains the selection process for the integrated households. The last part describes the processes of environmental assessment by means of selected indicators. In chapter 6 the model is applied to simulate and analyze the selected households in changing scenarios. Each Scenario is described individually. Then the simulation results are presented and discussed. In chapter 7 possible strategies to reduce environmental impacts of farming in the NCP ? considering the objectives of this work: sustainability and food security ? are discussed. The discussion focuses on the two main problems in the research area: fertilization and water. The analysis showed that current farming practices in the research area are not sustainable and can, thus, threaten future food security in China. The dilemma of the research area is that intensive agricultural production cannot be reduced because high yields are needed to feed the growing demand from a (economically) growing population. Simultaneously high resource consumption and pollution from farming cannot continue as that could eventually result in irreversible damage to agriculture in the NCP and also threatens livelihoods. Finally strategic policy recommendations, characteristics of improved management practices and recommendations for further research are presented. These recommendations can play an important role in decision guiding for policy makers. After reviewing other studies in the NCP, it has to be concluded that this work represents one of the most comprehensive analysis of the agricultural practices in the Hebei province. It was demonstrated that management practices for maize and wheat exist which can result in higher input-output efficiency and which are economically more profitable ? especially production options which include intercropping of other crops or demand-driven fertilization and irrigation. The hypothesis was tested to be valid. The simulation of optimization options showed that economically more profitable production options exist. These optimized production options are characterized by a more efficient factor input (mainly water and fertilization) and resulting decreased environmental impacts. The policy of a premium for reduced water use resulted in the highest simulated increases of total contribution margins with simultaneously reduced negative environmental impacts. However the simulation also revealed that, in order to ensure food security, incentives for producing wheat should be provided as it is the economically least profitable main crop, but it has important functions for own consumption. The simulation also revealed that policies aimed at increasing output prices of the main crops (in combination with optimized production options) can result in total higher contribution margins and decreased negative environmental impacts and higher resource use efficiency. It should be noted that the optimum results did not integrate production options which the surveyed farmers are currently applying ? this indicates that current practices are not efficient. Many studies state that knowledge transfer systems and extension services in the NCP are deficient. The survey showed that the majority of the households did not have contact with the extension services, and, moreover, most of the households never received agricultural training. A knowledge transfer program can be an efficient tool to reduce environmental impacts of farming in the NCP. In addition specific recommendations and systems under considerations of socio-economic approaches have to be developed to improve knowledge transfer and services to farmers in the NCP. Appropriate decision support systems for efficient land use in the research area have to be developed. This study showed that laws and regulations regarding environmental impacts exist, but they are not reliably enforced. Many studies state that the current institutional framework for water management is inadequate and that it, thus, represents one of the causes for the overexploitation of water resources. Therefore the responsibilities should be clearly defined in order to be able to create incentives for saving water and to increase efficiencies. Furthermore, farmers? water rights are not secure and transparent. Therefore plans, based on scientific estimations for water supply and demand, are needed to clearly define and enforce water use rights. Besides clearly defined and enforced water use rights, also longer, enforced and secure land-use rights might facilitate the adoption of sustainable farming practices. Also the institutional set-up complicates the implementation of policies. Therefore institutional change with coordinated efforts is needed. Decentralized and regionalized administrations might increase the effectiveness of policies. In addition the institutional framework has to be updated to the specific requirements in the NCP. One of the main reasons for problems related to water management is that it represents a mostly unregulated resource in the NCP. The survey showed that fertilizer use is strongly varying, overuse and undersupply occur in the research area. The strongly varying and inadequate fertilizer applications endanger the sustainability of the agricultural systems in the NCP. Furthermore the organic matter contents in the soils are too low. The survey also revealed that the farmers in the research area are not informed about the quality of their soils. Integrated into knowledge transfer programs, providing opportunities for soil analysis to the local farmers could result in fertilization practices which are based on the nutrient contents of the soil and, thus, are more efficient. Structural development projects in the Chinese rural areas need to be continued, especially in the research are, to avoid a rural exodus. The living conditions in the rural areas ? in terms of income, education and health services ? are still not comparable with the conditions in urban areas. Chinese policy has to focus on stopping the further decline of the ground water tables. Furthermore a conscious water use and environmental awareness for all stakeholders has to be created in order to avoid that pollution or resource scarcity and misuse will further reduce agricultural production in the NCP. The social costs of further decreased agricultural production in the NCP would be unbearable.Publication Economic evaluation of nitrogen application in the North China Plain(2008) Barning, Roland; Zeddies, JürgenToday, China had solved its long-standing problem of inadequate grain production, but there are two new targets for rural China. Firstly, one goal is rural development towards an improved income generation of rural households in order to slow down the increasing income disparity in China, especially between rural and urban residents. Secondly, decades of inefficient utilisation of resources and high consumption of materials led to overexploitation of water and land resources. Over-fertilisation and low nitrogen use efficiency are representative for the production system in the North China Plain, which is characterised by small-scale farm households who traditionally cultivate winter wheat and summer maize. This thesis is embedded in the Sino-German Research Training Group "Modeling Material Flows and Production Systems for Sustainable Resource Use in Intensified Crop Production in the North China Plain", a cooperation of the University of Hohenheim in Stuttgart and the Chinese Agricultural University in Beijing. The overall hypothesis of this project is that substantial changes in farming systems and management practices can reduce environmental pollution and at the same time stabilise or increase income of farmers. As a subproject, this thesis focuses on the identification and evaluation of applicable instruments for this goal. The final target of this thesis is the simulation of scenarios in order to estimate the impact of identified instruments on the nitrogen balance as well as on the net income of farm households. The literature review indicates that nitrogen application in the cultivation of wheat and maize in the North China Plain shows a broad variation. A considerable high share of farm households applies nitrogen input levels far beyond the crop demand. This situation raises the question, what do over-fertilising farm households have in common or in another way, which factors lead to nitrogen overuse. This question is the basis of the discussion on applicable instruments to reduce the described nitrogen overuse and finally the intended simulation approach. The analysis of impact factors on the nitrogen application level requires a broad analysis of the cultivation system, the farm household characteristics, and the income sources of the farm households. The descriptive results of the farm survey on 340 farm households in the North China Plain conducted in 2005 are presented in chapter 5. The farming system at the survey sites is characterised by farm households, who cultivate the wheat and maize rotation system. In most cases, it is extended by cash crops such as cotton or peanuts. The farm size is on average 0.5 ha of allocated farmland per farm household. About two thirds of the farm households have some kind of additional off-farm income source, which usually exceeds the income share from farming. Farm households without off-farm income sources generate only half of the average farm household income. The average farm household income reaches 10 150 ¥ (1 015 ?) per year, but there is a broad variation within the survey sites as well as between the surveyed townships. As mentioned already, over-fertilisation is prevalent for farming in the North China Plain. On average 360 kg of nitrogen per ha are applied in wheat and 220 kg in maize, while CHEN (2003) recommends 180 kg per ha for wheat and maize. Further, fertilizer costs are the major share of variable costs at all cultivated crops. The major nitrogen fertilizers are urea and ammonium carbonate. Nearly 80 per cent of the applied nitrogen originates from these fertilizers. Manure is only applied in wheat and it plays only a minor role as nitrogen source. About one third of the farm households cultivates wheat exclusively for own consumption and these farm households apply more nitrogen in wheat cultivation than the remaining farm households. The average yield of 5.7 t per ha in wheat and of 6.4 tons in maize enables gross margins of about 4 000 ¥ (400 ?) per ha, while in cotton and cultivation of peanuts the average gross margin is twice this amount. In chapter 6 the efficiency of the agricultural system is analysed. This analysis includes an impact analysis on nitrogen input and yield as well as an economic and ecologic optimum analysis of the nitrogen input. Nitrogen application rates show a broad variation at all cultivated crops. The impact analysis on nitrogen input does not show any clear and unique influence from the income structure of the farm household. Hence, additional cash income and less available family work force for farm work have no impact on the nitrogen application level. The analysis of the fertilizer costs instead of the amount of applied nitrogen confirms this statement. The nitrogen input analysis provides the nitrogen price as major impact factor. Higher nitrogen input levels are connected with lower nitrogen prices. Differences in nitrogen price result from the composition of the applied fertilizer, which differs in the ratio between fertilizer price and nitrogen content. The yield of wheat and maize indicates a high variation within the survey sites, but especially between the surveyed townships. A multifactorial regression analysis identified the location as the only significant influencing factor on yield. From the agronomic point of view, nitrogen is a major yield factor, but the survey data do not indicate a clear impact of nitrogen input on yield. The estimated relationship between nitrogen input and wheat yield provides a constant-shaped yield function. This result allows the assumption that due to the long term high nitrogen inputs the crop demand for nitrogen is fulfilled in the short term and additional nitrogen input is without impact on the yield. The quadratic regression models of nitrogen input and yield in wheat and maize fail to provide applicable economic optima of nitrogen input. For this reason, the concept of KRAYL (1993) is considered to estimate an applicable production function for wheat and maize. This concept is based on a location independent production function, which can be transferred into a location specific production function by the consideration of a location specific optimum nitrogen input and the corresponding yield. In this case the recommendations of ZHEN et al. (2005) are considered, which recommend for wheat a nitrogen input of 220 kg per ha in order to harvest 5.3 t per ha. The economic optimum nitrogen input levels are higher than the nitrogen recommendations of ZHEN et al. (2005), but still lower than the average nitrogen application rates. Hence, the present nitrogen price does not support the implementation of the recommended nitrogen application rates. The estimation of the economic optimum nitrogen input considers a production function based on the concept of KRAYL (1993) which is enlarged by factor and product prices. These are the crop prices and the costs of the other variable inputs, which are the variable costs excluding fertilizer costs. In this way, the gross margin can be described as a function of nitrogen input including the uniform factor crop price and the constant "other fertilizer costs". The calculated maximum gross margin in wheat of 4 057 ¥ per ha is achieved at a nitrogen input of 272 kg per ha. This level of nitrogen input is lower than the present average nitrogen input, but higher than the recommendations presented by ZHEN et al. (2005). Similar to the gross margin, the nitrogen balance is described as a function of nitrogen input, which considers the nitrogen input from fertilizer and straw left on the field from the previous cultivation as nitrogen inflow and the nitrogen content of the harvested crops as nitrogen outflow. Natural inflows and outflows are not taken into account. A nitrogen input of 205 kg per ha would result in the maximum accepted nitrogen surplus of 50 kg per ha and a gross margin of 3 365 ¥ per ha. Chapter 7 focuses on the estimation of the nitrogen balance and the analysis of relevant impact factors. The estimated nitrogen balances show at all crops, but especially in wheat cultivation a high level of nitrogen surplus, which is on average 200 kg of nitrogen per ha. The corresponding figures for maize, peanuts, and cotton are less than 100 kg of nitrogen per ha. Similar to nitrogen input, the nitrogen balance is indicated by a broad variation. This variation allows a classification of farm households into three nitrogen balance types: "equalized nitrogen balance", "slight nitrogen surplus", and "heavy nitrogen surplus". The farming system of "heavy nitrogen surplus" farm households can be characterized by low yields, high nitrogen input, and low calculated gross margin. These farm households have a share of 32 per cent of all farm households and cultivate about one third of the wheat of all surveyed farms, but their cumulated nitrogen input amounts to 50 per cent. Furthermore, this group of farm households accounts for 67 per cent of the cumulated nitrogen surplus. This situation leads to the question, which factors lead to that kind of nitrogen overuse. A binary logistic regression model is used to analyse the impact of pre-selected factors on the probability of a group membership interval, in this case to the "equalized nitrogen balance" as well as the "heavy nitrogen surplus" group. The covariates "family size", "education", "farmland", and "off-farm activities" do not show any significant influence. Similar to the nitrogen input analysis, a low nitrogen price and the application of manure increases the probability of a farm households of membership of the "heavy nitrogen surplus" group. Also, a low village average wheat yield and a high village average nitrogen input in wheat increases the probability. In order to identify parallel impacts of farm household characteristics on the nitrogen balance the group of farm households of "heavy nitrogen surplus" and "equalized nitrogen balance" are clustered. The farm households of the major cluster of the "heavy nitrogen surplus" group are characterized by less farmland and low farm households income without off-farm activities. Farm households of these characteristics are found at a minor cluster of the "equalized nitrogen balance" group, as well. A low income does not automatically lead to nitrogen application rates beyond the crop demand. Indeed, the combination of low income and high nitrogen input shows a higher probability than the combination of high income and high nitrogen input. Without doubt, the assumption that a lower income leads to a lower nitrogen input must be rejected. The nitrogen price might be a clear indicator for classification of farm households, but this criterion requires the analysis of the cultivation system of the considered farm household. For this reason, easy observable dichotomous variables are pre-selected and analysed whether a certain pattern can be used as criterion for identification as a part of a target group specific instrument. This approach does not provide applicable results. Chapter 8 deals with the simulation of scenarios of the nitrogen surplus reduction and the estimated impact on the net income of farm households. In the first step, the instrument independent potential nitrogen surplus reduction is estimated. The cumulated nitrogen surplus of wheat cultivation of all surveyed farm households can be reduced by more than 60 per cent, if all farm household would follow the nitrogen input recommendations and harvest the target yield of ZHEN et al. (2005). This scenario shows no changes in net income. However, the approach that all farmers would modify their present nitrogen application level to the recommended application rates might be too ambitious. Hence, it might be more realistic to consider a theoretical shift of half of the farm households belonging to the "heavy nitrogen surplus" group to the "slight nitrogen surplus" group. The nitrogen surplus reduction in wheat would be 18 per cent. The affected group of farm households represents 17 per cent of the wheat cultivation area, but accounts initially for 32 per cent of the total nitrogen surplus in wheat. This hypothetical shift considers the modification of the share of farm households belonging to a certain nitrogen balance type. The average nitrogen surplus and gross margin in combination with the share of farm households of nitrogen balance type is taken to estimate the overall nitrogen surplus and net income from farming of the considered nitrogen balance type. A change in the share of farm households modifies the overall nitrogen surplus and net income from farming of each nitrogen balance type and these modified values are considered as the impact of the evaluated instrument, which originate that change of share. The individual gross margin multiplied by the individual cultivation area of all farm households is summed up and it is considered as net income from farming. In the following step, the impact of an instrument on the nitrogen balance and the net income is simulated. The variable nitrogen price shows a highly significant influence towards the classification of nitrogen balance type. For this reason, a modification of the nitrogen price is selected as considered instrument. A higher nitrogen price reduces the probability of "heavy nitrogen surplus" and this difference in probability can be regarded as the share of farm households, which convert form "heavy nitrogen surplus" to "slight nitrogen surplus". In addition, a theoretical shift of "slight nitrogen surplus" farm households into "equalised nitrogen balance" farm households is considered. As instruments, a percental increase of the nitrogen price by 10 per cent is simulated. An increased nitrogen price by 10 per cent results in a reduction of the total nitrogen surplus of 4.9 per cent. The estimation of the impact on the net income from farming considers the described theoretical shift of farm households to another nitrogen balance type and a multiple regression model of the gross margin. The latter model considers all farm households and indicates a negative impact of the nitrogen price on the gross margin. A combination of both models results in a marginal reduction of net income from farming by 0.6 per cent, in case of a 10 per cent nitrogen price increase. In addition, a target simulation focuses on a more noticeable nitrogen surplus reduction. The average nitrogen price increase by 159 per cent to obtain a nitrogen surplus reduction of 50 per cent, but the net income from farming shows a reduction by 15.3 per cent. Summarized, the considered instrument "nitrogen price modification" fulfils the demand partly. It allows a nitrogen surplus reduction without a strong impact on the net income, but there are two major disadvantages. Firstly, huge nitrogen price modifications are required to gain a noticeable impact on nitrogen surplus reduction. Secondly, a nitrogen price modification affects all farmers, but there is a broad variation of the nitrogen balance and a high share of farm households actually has an equalized nitrogen balance. The discussion about the reasons for nitrogen overuse in the wheat and maize farming system in the North China Plain leads to the following results. This thesis cannot provide a comprehensive answer on the question, what the core reasons for the described surplus at the nitrogen balance are. The described high variation in nitrogen input and the reported low rate of farm households, which follow the recommended nitrogen application rates, leads to the assumption that an insufficient knowledge transfer system is the key reason for the inadequate use of the traditional cultivation system in terms of fertilizer application in the North China Plain. Lack of knowledge might be an explanation that low income farm households without off-farm activities do not have less fertilizer costs, but even have a higher probability to apply above average nitrogen rates than farm households, which have additional income from off-farm activities. The discussion about applicable instruments focuses on nitrogen tax, implementation of new agricultural technologies, and improvements in education and agricultural skills. The modification of the nitrogen price by a nitrogen tax is considered as an economically applicable instrument, but there are the described disadvantages. Furthermore, an economic instrument might not be suitable, if a noticeable share of the target group seems not to consider their farm level economic optimum as criterion in their determination of the applied nitrogen. In addition, a low nitrogen price is a suitable indicator for nitrogen overuse, but not its explanation. The nitrogen price represents the composition of the used fertilizer. An unfavourable composition can be regarded as an insufficient use of the cultivation system, which results in the described nitrogen overuse. Hence, an improvement in application of the cultivation technology might be more successful than an economic instrument. The discussion about new technologies focuses on their implementation. Only a minority of farm households follows the presently recommended nitrogen application rates and at a noticeable share of farm households the traditional cultivation system is not free of cultivation mistakes, especially in terms of nitrogen application. This raises the question, how successful a new agricultural technology can be implemented. The correct application present of the cultivation system and a proper working knowledge transfer system are the preconditions for the implementation of new technologies. For this reason, improvement in education and agricultural skills are the base instruments as well as the basis for all advanced instruments, because a sustainable cultivation system requires a sustainable implementation of its correct use.Publication Environmental and economic assessment of the intensive wheat - maize production system in the North China Plain(2016) Ha, Nan; Bahrs, EnnoTo ensure food security for its vast population input intensification in crop production has been one of China’s major strategies in the last decades. However, the negative environmental impact of the highly intensive crop production becomes apparent. Especially the emission of greenhouse gases (GHG) constitutes a major sustainability issue of crop production in China. The winter wheat - summer maize (WW-SM) double cropping system plays a crucial role for China’s national food security. Strong research efforts mainly focusing on field experiments insufficiently consider the economic viability of the proposed improvement strategies and farmers’actual crop management. Therefore this study aims to fill this void by assessing farmers’actual crop management in the WW-SM production system, with regard to its environmental and economic performance to derive suitable improvement strategies for more sustainable crop production in the North China Plain (NCP). This cumulative PhD thesis consists of three papers published or accepted with revisions in international peer-reviewed journals. A field survey conducted in 2011 interviewing 65 WW-SM producing farm households constitutes the core data base for the thesis’analysis. The data was supplemented by expert interviews and specific secondary data. Partial life cycle analysis and economic assessment were conducted, comprising GHG emission, product carbon footprint (PCF), gross margin (GM), variable cost per unit product and life cycle costing (LCC) as key environmental and economic indicators, respectively. The first article describes the status quo of single farm environmental and economic performance of 65 WW-SM producers. The results revealed a huge heterogeneity among farms. Astonishingly no trade-off between productivity and sustainability could be identified in the region. Building on cluster analysis, with farms grouped according to their economic and environmental performance into “poor”, “fair” and “good” producers, the regional GHG mitigation potential was estimated. Under the scenario assumption that all grain in the NCP is produced under “good” production conditions, 21% and 7% of GHG could be mitigated in wheat and maize production, respectively. To be able to address the existing heterogeneity and develop strategies towards attaining GHG mitigation in practice, the second article aimed at assessing the factors determining farmers’ current environmental and economic performance. Using stepwise multiple linear regression (SMLR) it was revealed that nitrogen (N) input and electricity for irrigation were responsible for 0.787 and 0.802 of variability (adjusted R2) in the GHG emission results of the WW and SM production, respectively. Electricity for irrigation and labor were the most significant factors explaining the differences in LCC of WW and SM production, with an adjusted coefficient of determination (adjusted R2) of 0.397 and 0.29. This finding indicates that N input, electricity for irrigation and labor are key target areas for lowering GHG emissions and production costs of the WW-SM production system in the NCP. As revealed in the second article overuse of N fertilizer, which actually constitutes a major current issue in China, offers great potential for reducing GHG emissions and production costs in the WW-SM production system. Therefore in the third article three simple and easily to apply N fertilizer recommendation strategies are tested, which could be implemented on large scale through the existing agricultural advisory system of China, at comparatively low cost. Building on the household dataset, the effects of the three N strategies under constant and changing yield levels on PCF and GM were determined for every individual farm household. The N fixed rate strategy realized the highest improvement potential in PCF and GM in WW; while the N coefficient strategy performed best in SM. The analysis furthermore revealed that improved N management has a significant positive effect on PCF, but only a marginal and insignificant effect on GM. On the other side, a potential 10 % yield loss would have only a marginal effect on PCF, but a detrimental effect on farmers’income. It will be of vital importance to avoid any yield reductions and respective severe financial losses, when promoting and implementing advanced fertilization strategies. Therefore, it is furthermore recommended to increase the price of fertilizer, improve the agricultural extensions system, and recognize farmers’ fertilizer related decision-making processes as key research areas. The presented thesis gives valuable contributions to the development of environmentally and economically more sustainable crop production systems in the NCP. The thesis concludes that an adjustment in the agricultural advisory system is required, supported by more interdisciplinary research, which is able to address the inherent complexity of realizing more sustainable crop production in China.Publication Grasping the complexity of intercropping - developing and testing an integrated decision support system for vegetable production in the North China Plain(2010) Feike, Til; Claupein, WilhelmThis cumulative dissertation consists of six papers published, accepted or submitted to international high standard journals or books. To detect and describe the status quo of vegetable intercropping in the North China Plain (NCP), a survey was conducted from autumn 2007 to spring 2008. The results of the interviews with researchers, extensionists and farmers embedded in the first article revealed a huge variety of intercropping systems being practiced by farmers in the region. The first article furthermore elaborated farmers? underlying motives and concepts and described the knowledge transfer systems involved. When evaluating the prevailing systems against the background of the rapidly changing socio-economic frame conditions for farming in rural China, it became obvious that a great proportion of the systems practiced nowadays are prone to extinction in a long run. Therefore the second article discussed possible adjustments of the intercropping systems to fit the demands of modern agriculture, while maintaining their potential agronomic and environmental benefits. To enable mechanization, it was suggested to either adjust the machinery to the traditional row intercropping systems, or adjust the cropping system to the prevailing and available machinery. The latter approach was then followed throughout the thesis, using an agronomic modeling approach. The combination of Chinese cabbage and maize was selected, as it is a traditional intercropping system, with strong interspecific effects. In the course of this study, the two crops were strip intercropped in four field experiments at three sites in Germany and in China in 2008 and 2009. To understand, explain and predict plant behavior under the impact of complex cropping structures, crop growth models present a viable and powerful tool. However, two constrains had to be overcome within the framework of this thesis i) Chinese cabbage is not integrated in the common process-oriented crop growth models, ii) a method had to be developed to quantify resource competition and simulate intercropping. Therefore the integration of Chinese cabbage, the number one field vegetable of China, into the CROPGRO model constituted the first step for the simulation of intercropping systems in China. Two greenhouse experiments, testing crop growth and development under different temperature regimes, served as the data base for the accurate parameterization of Chinese cabbage and built the baseline for the third article. Cardinal temperatures of Chinese cabbage were identified by correlating mean relative growth rates and mean leaf appearance rates to temperature. Minimum growth temperature was identified at 0 °C, optimum temperature ranges between 14 °C and 24 °C, and maximum temperature is 34 °C. The further adjustment and testing of the model, which was executed on up to six independent data sets, is presented in the fourth article. The key to successfully simulate intercropping systems is the knowledge on changes in resource availability compared to monocropping. Therefore, a method was developed to quantify the availability of the most crucial growth factor solar radiation at any location within a Chinese cabbage strip, presented in the fifth article. The method was extended in the sixth and final article to enable the estimation of available radiation in Chinese cabbage strips of different widths. The ?environmental modifications? option of CROPGRO was employed to simulate the effects of the estimated reduction in incoming radiation in Chinese cabbage strips of different width. Simulations were conducted over up to thirty years of weather data of 12 locations throughout the NCP, and were additionally tested on different soil texture types. The results were extended over the entire NCP by linking them to a GIS-system. The developed approach constitutes a reliable decision support for the optimization of the spatial arrangements in Chinese cabbage strip intercropping systems, according to local soil and climate conditions. The described approach can be extended to develop a comprehensive decision support system that allows testing of various intercrop combinations under a wide range of climate and especially radiation environments. The presented thesis is a valuable contribution to the development of sustainable vegetable production systems in the NCP. A new method to quantify availability of solar radiation in strip intercropping was developed, which can be applied in various other intercropping systems. The integration of Chinese cabbage into CROPGRO, offers great opportunities not only for studying intercropping systems, but also for improving input levels and resource use efficiency in Chinese cabbage production in China and throughout the world. Understanding farmers? concepts and estimating the production potential of intercropped Chinese cabbage created additional value, which substantially contributes to realizing the potential of intercropping in the NCP.Publication Land property, tenure security and credit access: a historical perspective of change processes in China(2006) Jia, Xiangping; Piotrowski, StephanThe North China Plain is the country?s granary: most of wheat and maize is supplied by this region in the northeast of China. Intensity of agricultural production has risen sharply in the last decades and the negative environmental effects like water scarcity, salinization and nitrate contamination have been widely acknowledged. In the wake of the country?s rapid economic development it becomes at the same time more and more urgent to narrow the gap between the well-being of the urban and rural population. In order to better understand the paths that lead to this present dilemma, this paper provides a historical overview of the development of the land and water markets and the rural financial system. It highlights the linkages and reciprocal restraints between these three sectors and gives some conclusions and policy recommendations on how to proceed in order to further a more sustainable development in the North China Plain. Apart from literature review, data from an original farm household survey, conducted by the authors, is used to substantiate the arguments put forth in this paper.Publication Real-time in situ measurements of trace gases from agriculturally cultivated soils by means of laser spectroscopic techniques(2008) Hillebrand, Malte; Haas, UlrichTwo devices to study the exchange of climate relevant trace gases between arable cultivated soils and the atmosphere in the North China Plain are presented in this thesis. They are based on Tunable Diode Laser Photoacoustic Spectroscopy (TDL-PAS). These devices are capable of real-time in situ detection of trace gases. For methane a detection limit of 85 ppb and for ammonia of 111 ppb was achieved, respectively. For the field campaign at the experimental field Dongbeiwang (DBW) in Beijing it was necessary to optimize the instruments due to the harsh conditions in China, e.g. high variation in temperature, high humidity and particulate matter emissions. This included accurate thermally stabilization of the system as well as long-term stability of the laser diode and the possibility of unattended operation over a period of several days. These prerequisites were fulfilled and evaluated in Germany before the devices were brought to China for the field campaign in the years 2006 and 2007. Additionally, mobile closed chambers for the trace gas exchange measurements were designed in Germany. They consisted of two parts: One frame installed permanently in the soil, therein agricultural crops could be planted, and a hood placed on it during the measurement and removed afterwards again. Altogether seven frames made from stainless steel were constructed by a company located in Beijing. Three hoods of different heights (250, 500 and 1000 mm) were made from 8 mm colorless Plexiglas and were built by a German company. The innovation of this design was the possibility to insert up to eight cooling packs that cooled down the enclosed air in the chambers by mixing it via two fans. By comparing measurements with and without applying cooling packs it was shown that the temperature difference between both situations was increasing up to 10 K. According to ambient air temperature measurements the test also showed that by applying cooling packs the temperature of the enclosed air could be adapted close to ambient conditions. After installation of the closed chambers in DBW a test checking the gas tightness had to be performed. With this test leakages of the frames, hoods and tubes should be discovered. This was done by injection of 2 ml ethane into the closed chambers and studying the concentration decrease within one hour of closure time. For this test the permanently installed gas chromatograph in the measurement container in DBW was used, connected by Teflon tubes to the closed chambers. All closed chambers showed leakages lower than 10% and therefore could be considered as tight. For methane measurements the chambers were operated in the dynamic mode, so the air inside of the chamber was circulated through the TDL-PA system and pumped back into the chamber. The increase or decrease in methane concentration with time was determined and flux rates were calculated. The obtained data confirmed that the soil in DBW, a Calcaric Cambisol according to FAO classification, could be considered as a methane sink. The exchange rate ranged from ?0.17 to ?3.33 mg CH4-C m-² d-¹ for winter wheat and from ?0.68 to ?2.07 mg CH4-C m-²; d-¹ for bare soil. For summer maize the exchange rate was slightly lower and ranged from ?0.51 to ?1.0 mg CH4-C m-² d-¹ and from ?0.53 to ?1.14 mg CH4-C m-² d-¹ for the control plot. Due to the fact that elevated methane concentrations at daybreak were detected during the exchange measurements at the plots planted with winter wheat as well as at the control plot a diurnal variation in methane concentration was assumed. To verify and quantify this diurnal variation in methane concentration at DBW, one plot was selected for a 24 hour measurement campaign. During this measurement campaign ambient air methane concentrations of up to 22 ppm were observed during nighttime, which was elevenfold the normal concentration. Because the previous exchange measurements revealed that methane was not emitted by the soil it must originated from somewhere else. After the 24 hour measurement campaign the ambient air methane concentrations in DBW as well as at other places in the vicinity of DBW were studied to detect the source of the methane emissions. For that purpose an ultrasonic anemometer for wind direction and wind speed measurement was combined with the TDL-PA system. A diurnal variation with maximum methane concentrations of about 40 ppm during nighttime and early morning and minimum concentrations of about 1.4 ppm during the afternoon were detected in DBW. Research conducted at the campus of the CAU, 3.2 km south of DBW, showed a similar pattern. These results confirmed the urban heat island effect where stable atmospheric layering dominates during the night and a mixing layer dominates during daytime. According to literature the height of this atmospheric boundary layer in Beijing in autumn was of 1 km thickness during daytime and of 200 ? 400 m during nighttime. Moreover the high methane concentrations in the night verified the assumption of a methane emission source in the vicinity of DBW and the CAU. The search for a potential emission source revealed a landfill approximately 6 km north-west of the CAU as well as 5.5 km west of DBW. Measurements conducted at the landfill site itself showed a diurnal methane emission pattern as well, with maximum concentrations up to 450 ppm during nighttime and minimum concentrations of about 10 ppm during daytime.