Repository logo
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
    Communities & Collections
    All of hohPublica
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
  1. Home
  2. Browse by Subject

Browsing by Subject "Pesticide reduction"

Type the first few letters and click on the Browse button
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Impact of plastic rain shields and exclusion netting on pest dynamics and implications for pesticide use in apples
    (2025) Bischoff, Robert; Piepho, Hans-Peter; Scheer, Christian; Petschenka, Georg
    Apple production is among the most pesticide-intensive cultures. Recently, plastic rain shields and pest exclusion netting have emerged as potential measures to reduce the heavy reliance on chemical pesticides in apple, due to their inhibitory effect on pathogen and pest infestations. In a field trial, we compared yields, pest, and pathogen abundance in an orchard consisting of four plots, where two plots were covered with anti-hail net covers, one with plastic rain shields only, and one with plastic rain shields and exclusion netting. Pests and pathogens were assessed visually, and beating tray samples were collected to compare overall arthropod diversity between plots. We observed virtually no scab infections in both plastic rain shield plots, despite a more than 70% reduction of fungicides applied, when compared to anti-hail plots. Although no codling moth insecticides were sprayed in the plot with exclusion netting we found significantly reduced damage here, when compared to the anti-hail plots. However, likely due to microclimatic changes, we observed an increase of powdery mildew, woolly apple aphids, and spider mites under plastic rain shields. Modeling of metabolic rates of arthropod herbivores and predators revealed that there is an increased potential of herbivory under plastic rain shields. However, in terms of plant protection, the net effect of plastic rain shields and exclusion netting was a substantial reduction in chemical pesticide use, demonstrating that they represent a promising approach to minimize the use of chemical pesticides in apple production.

  • Contact
  • FAQ
  • Cookie settings
  • Imprint/Privacy policy