Browsing by Subject "Rubber"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Publication Simulating the impact of land use change and climate change on the supply of ecosystem services in a rubber-dominated watershed in Southwestern China(2020) Thellmann, Kevin; Asch, FolkardThis cumulative PhD thesis investigates the expansion of rubber (Hevea brasiliensis Müll. Arg.) plantations and the ensuing multiple impacts on biodiversity and the supply of ecosystem services (ESS) in a mountainous watershed in Xishuangbanna Prefecture, Southwestern China. In recent decades, the study area, the Nabanhe Reserve, saw the expansion of rubber plantations and the loss of extensive forest areas, which led to a substantial decline in ESS. Workshops with regional stakeholders resulted in the development of three future land use scenarios for Nabanhe Reserve (2015 – 2040), varying in their degree of rubber expansions, management options and reforestations efforts. In the first study, the InVEST (Integrated Valuation of Ecosystem Services and Trade-offs) modeling framework was used to analyze the impact of these rubber expansion scenarios on selected ESS: sediment retention, water yield, habitat quality, and carbon sequestration. In addition, a model for assessing potential rubber yields was developed and implemented in ArcGIS. The analysis also included different statistical weighting methods to include rankings for the preference of ESS from three contrasting stakeholder groups (prefecture administration, tourists, off-site citizens). The study concludes that the integrated ESS indices would be overestimated without the inclusion of the stakeholder groups. The second study introduced a new method to identify potential tipping points in the supply of ESS. Here, time-series data derived from InVEST have been combined with a sequential, data-driven algorithm (R-method) to identify potential tipping points in the supply of ESS within two contrasting scenarios of rubber expansion in Nabanhe Reserve. The tipping point analysis included hydrological, agronomical, and climate-regulation ESS, as well as multiple facets of biodiversity. The model results showed regime shifts indicating potential tipping points, which were linked to abrupt changes in rubber yields, in both scenarios and at varying spatial scales. The study concludes that sophisticated land use planning may provide benefits in the supply of ESS at watershed scale, but that potential trade-offs at sub-watershed scales should not be neglected. The third study focused on modeling hydrological ESS (water yield and sediment export) in Nabanhe Reserve under multiple scenarios of land use and climate change in order to assess how both drivers influence the supply of these ESS. Three rubber expansion scenarios were analyzed in combination with multiple climate change scenarios using the InVEST modeling framework. Simulation results showed that the effect of land use and land management decisions on water yield in Nabanhe Reserve are relatively minor (4% difference in water yield between land use scenarios), when compared to the effects that future climate change will exert on water yield (up to 15% increase or 13% decrease in water yield compared to the baseline climate). Changes in sediment export were more sensitive to land use change (15% increase or 64% decrease) in comparison to the effects of climate change (up to 10% increase). The study concludes that in the future, particularly dry years may have a more pronounced effect on the water balance in Nabanhe Reserve as the higher potential evapotranspiration increases the probability for periods of water scarcity, especially in the dry season. In conclusion, the studies showed detrimental consequences induced by rubber expansions for all assessed ESS, with the exception of rubber yields. Further continuing the trend of rubber expansions in the study area is not the best option in terms of integrated ESS supply on a landscape scale. Land use planning alternatives, such as rubber expansions restricted to suitable areas only, in combination with reforestation efforts at less suitable locations, may be used to keep crucial environmental functions intact. Policy regulations at the local level, if properly assessed with spatial models and integrated stakeholder feedback, have the potential to buffer the typical trade-off between agricultural intensification and environmental protection. The implementation of these regulations might still pose a considerable challenge. The methods introduced in this Dissertation can easily be transferred to regions facing comparable land use situations, as InVEST and a large amount of the utilized spatial datasets are freely available.